共检索到 10

To enhance the barrier performance of biomass films, carboxymethyl cellulose (CMC) was combined with montmorillonite (MMT) modified by stearyltrimethylammonium bromide (STAB) and loaded with Fe3O4 particles as a nano-filler, and a CMC/m-OMMT mulch film was fabricated using magnetic field orientation. The characterization of m-OMMT was conducted through Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM), which confirmed the successful intercalation of STAB into the MMT structure, along with the effective loading of Fe3O4 particles onto the MMT matrix. A comprehensive investigation into the mechanical properties of CMC/m-OMMT films revealed that, in the dry state, the films exhibited a tensile strength of 29 MPa and an elongation at break of 64 %. A series of barrier performance tests were conducted on the films. The findings demonstrated that the incorporation of MMT and the application of a magnetic field substantially enhanced the water contact angle, increasing it from 86 degrees to 112 degrees. Additionally, water vapor permeability increased by approximately 30 %, soil erosion was reduced by about 22 %, and UV resistance was notably improved by 94 %. Moreover, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and biodegradation tests on the CMC/m-OMMT/40mT films revealed that the magnetic field effectively oriented the MMT nanosheets within the composite matrix. This study presents a novel approach for enhancing the barrier properties of biomass-based mulch films.

期刊论文 2025-05-01 DOI: 10.1016/j.ijbiomac.2025.142428 ISSN: 0141-8130

This study sought to develop a biodegradable material that can be a substitute for conventional plastics and is sustainable and eco-friendly. The research's primary focus was the conversion of carboxymethyl cellulose (CMC) derived from agricultural waste into a bioplastic film that is satisfactory for use in packaging. The weak mechanical stability and excessive water sensitivity of CMC films limit their widespread use. To overcome these limitations, therefore, CMC films were reinforced with varying concentrations (0, 5, 10, 15, 20, and 25%) of zinc oxide nanoparticles (ZnO NPs), using a solution casting method. The films were also surface-modified by spray coating with a 1:1 composite mixture of poly(dimethylsiloxane) (PDMS) and starch. An array of analyses were used to investigate the films' properties. Structural characterization employing Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed the successful incorporation of ZnO and uniformity of PDMS/starch coating on the films. Thermogravimetric analysis (TGA) and mechanical testing revealed that the films' thermal and mechanical properties were improved by the incorporation of ZnO, with the film CZ20-C exhibiting the highest value of tensile strength--14.029 MPa--and 27.59% elongation at break. The films exhibited excellent water resistance, as evidenced by a remarkable increase in their water contact angle to 152.04 degrees. Furthermore, biodegradability studies demonstrated that the films degraded by 84.78% in soil within 20 days, under ambient conditions. Films with these desirable characteristics are therefore producible through the study's facile strategy for preparing CMC-based eco-friendly composite films that have excellent potential to replace conventional plastic in the packaging industry.

期刊论文 2025-04-01 DOI: 10.1007/s10570-025-06485-z ISSN: 0969-0239

This research explores the synthesis of carboxymethyl cellulose (CMC) for the development of a cost-effective bioplastic film that can serve as a sustainable alternative to synthetic plastic. Replacing plastic packaging with CMC-based films offers a solution for mitigating environmental pollution, although the inherent hydrophilicity and low mechanical strength of CMC present significant challenges. To address these limitations, zinc oxide nanoparticles (ZnO NPs) were employed as a biocompatible and non-toxic reinforcement filler to improve CMC's properties. A solution casting method which incorporated varying concentrations of ZnO NPs (0%, 5%, 10%, 15%, 20%, and 25%) into the CMC matrix allowed for the preparation of composite bioplastic films, the physicochemical properties of which were analyzed using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The results revealed that the ZnO NPs were well-integrated into the CMC matrix, thereby improving the film's crystallinity, with a significant shift from amorphousness to the crystalline phase. The uniform dispersion of ZnO NPs and the development of hydrogen bonding between ZnO and the CMC matrix resulted in enhanced mechanical properties, with the film CZ20 exhibiting the greatest tensile strength-15.12 +/- 1.28 MPa. This film (CZ20) was primarily discussed and compared with the control film in additional comparison graphs. Thermal stability, assessed via thermogravimetric analysis, improved with an increasing percentage of ZnO Nps, while a substantial decrease in water vapor permeability and oil permeability coefficients was observed. In addition, such water-related properties as water contact angle, moisture content, and moisture absorption were also markedly improved. Furthermore, biodegradability studies demonstrated that the films decomposed by 71.43% to 100% within 7 days under ambient conditions when buried in soil. Thus, CMC-based eco-friendly composite films have the clear potential to become viable replacements for conventional plastics in the packaging industry.

期刊论文 2025-03-01 DOI: 10.3390/polym17050579

The increasing issue of plastic waste necessitates improved solutions, and biodegradable food packaging is a promising alternative to traditional plastic. In this study, we prepared packaging films using cassava starch (CV), chitosan (CT) and carboxymethyl cellulose (CMC), with glycerol as a plasticizer. However, these films require modifications to enhance their mechanical properties. Therefore, we modified the films by adding vanillin as the crosslinking agent and gingerol extract stabilized silver nanoparticles. The films were fabricated using the filmcasting method and characterized by FTIR, XRD, SEM, TGA, mechanical property test, biodegradability test, antibacterial test and food packaging evaluation test. Among these films, CT/CV/V/CMC/Gin-AgNPs1 exhibited superior mechanical properties and demonstrated excellent anti-bacterial property both for gram-positive (S. aureus) and gram-negative (E. coli) bacteria and biodegradability, losing over 50% of its weight after 21 days of burial in soil and effectively preserved grapes at 4 degrees C for 21 days.

期刊论文 2025-02-28 DOI: 10.1016/j.foodchem.2024.142102 ISSN: 0308-8146

In this paper, carboxymethyl cellulose (CMC) and hemicellulose derived from water hyacinth were used to prepare hemicellulose-based biodegradable mulch film by covalent cross-linking and ionic cross-linking in order to expand its application in agricultural production practice. The esterification reaction between hemicellulose, CMC and citric acid resulted in an increase in tensile strength and elongation at break of the membranes. When citric acid was not used as cross-linking agent and the pH was lowered, the sodium carboxylate group was protonated into carboxylic acid group, which provided abundant active sites for chemical cross-linking of hydroxyl group on hemicellulose and hydroxyl group on CMC. Furthermore Zn2+ could cross-link with carboxylic acid group through hydrogen bonding, and when the DS of carboxymethyl group was high, the cross-linking of Zn2+ with Zn2+ was higher, and the conversion into nano ZnO was lower, which was conducive to the uniform distribution and reduction of agglomeration phenomenon in the films. It is favorable for its uniform distribution in the film and reduces the agglomeration phenomenon. The mulch films made from water hyacinth has excellent mechanical properties, light transmittance, water absorption, soil moisture retention and heat preservation, and is biodegradable. This study will provide new ideas for water pollution control and farmland pollution for sustainable agricultural production.

期刊论文 2024-12-15 DOI: 10.1016/j.indcrop.2024.119548 ISSN: 0926-6690

Carboxymethyl cellulose (CMC) bioplastic shows great promise for sustainable food packaging. This study synthesized zinc oxide nanoparticles (ZnO NPs) from pineapple waste via green synthesis and incorporated them into CMC to develop enhanced nanocomposite films. Key steps included preparing ZnONP powder and formulating ZnONP-CMC (ZCMC) (1.0% w/v) solutions for film fabrication. The nanocomposites were characterized using FTIR, XRD, SEM-EDX, TGA, and DSC to assess structural integrity and thermal stability. Physical properties showed enhancement, including a thickness of 0.17.05 mm, opacity of 17%, moisture content of 52.38%, and water solubility of 64.52%. The mechanical properties also improved significantly, with a tensile strength of 26.30 MPa and elongation at a break of similar to 50%. FTIR and XRD confirmed the successful incorporation of ZnO NPs, which improved the crystallinity and structural integrity of the CMC matrix. Notably, the ZCMC nanocomposite exhibited rapid biodegradation within 9 days under soil conditions, highlighting its potential for reducing environmental impact. In conclusion, adding ZnO NPs to CMC films notably improves their physical, mechanical, and thermal characteristics, rendering them ideal for food packaging. While the mechanical and biodegradation properties are promising for food packaging applications, future research should focus on evaluating the antimicrobial properties and practical applications of the ZCMC films in food preservation.

期刊论文 2024-12-01 DOI: 10.1002/slct.202404773 ISSN: 2365-6549

This study targets explicitly finding an alternative to petroleum-based plastic films that burden the environment, which is a high priority. Hence, polymeric films were prepared with carboxymethyl cellulose (CMC) (4%), pectin (2%), and polyhydroxybutyrate (PHB) (0.5%) with different concentrations of thymol (0.3%, 0.9%, 1.8%, 3%, and 5%) and glycerol as a plasticizer by solution casting technique. The prepared films were tested for mechanical, optical, antimicrobial, and antioxidant properties. Film F5 (CMC + P + PHB + 0.9%thymol) showed an excellent tensile strength of 15 MPa, Young's modulus of 395 MPa, antioxidant activity (AA) (92%), rapid soil biodegradation (21 days), and strong antimicrobial activity against bacterial and fungal cultures such as Klebsiella pneumoniae, Staphylococcus aureus, Escherichia coli, Aspergillus niger, and Aspergillus flavus. The thymol content increase in films F6 (1.8%), F7 (3%), and F8 (5%) displayed a decrease in mechanical properties due to thymol's hydrophobicity. For shelf life studies on tomatoes, F2, a film without thymol (poor antimicrobial and antioxidant activities), F5 (film with superior mechanical, optical, antimicrobial, and antioxidant properties), and F7 (film with low mechanical properties) were selected. Film F5 coatings on tomato fruit enhanced the shelf life of up to 15 days by preventing weight loss, preserving firmness, and delaying changes in biochemical constituents like lycopene, phenols, and AA. Based on the mechanical, optical, antimicrobial, antioxidant, and shelf life results, the film F5 is suitable for active food packaging and preservation.

期刊论文 2024-10-01 DOI: 10.1111/1750-3841.17312 ISSN: 0022-1147

Carboxymethyl cellulose (CMC) has attracted considerable interest in research due to its exceptional film-forming properties and compatibility with biological systems. However, CMC films still suffer from mechanical brittleness and structural instability due to the rigid structure and many hydroxyl groups in practical applications. Herein, a nanocomposite film is reported, synthesized via inserting layered montmorillonite (MMT) into a CMC and guar gum (GG) hydrogen bond networks. Incorporating MMT with a high aspect ratio increases the number of hydrogen bond cross-linking sites among constituents, thereby enhancing the mechanical strength and toughness of nanocomposite films. The resulting CMC/GG(10)/MMT6 films show flexibility (elongation at break 83.5 +/- 4.35%), high tensile strength (53.5 +/- 1.10 MPa), and high toughness (32.16 +/- 1.04 MJ/m(3)). These films also integrate hydrophobic (up to 84.78 degrees) and high-temperature resistance (50% degradation temperature up to 304 degrees C) properties to adapt to complex practical application environments. Moreover, they exhibit excellent ultraviolet shielding performance under a wide wavelength range (200-320 nm). Soil burial experiments showed that all the films could be assimilated into the soil within about 9 days. This approach offers a simple and promising route for producing biodegradable CMC-based films for food packaging.

期刊论文 2024-08-22 DOI: 10.1021/acsapm.4c01925 ISSN: 2637-6105

Geosynthetic clay liners (GCLs) are mostly used as flow barriers in landfills and waste containments due to their low hydraulic conductivity to prevent the leachate from reaching the environment. The self-healing and swell-shrink properties of soft clays (expansive soils) such as bentonite enable them as promising materials for the GCL core layers. However, it is important to modify their physico-chemical properties in order to overcome the functional limitations of GCL under different hydraulic conditions. In the present study, locally available black cotton soil (BCS) is introduced in the presence of an anionic polymer named carboxymethyl cellulose (CMC) as an alternative to bentonite to enhance the hydraulic properties of GCL under different compositions. The modified GCL is prepared by stitching the liner with an optimum percentage of CMC along with various percentages of BCS mixed with bentonite. Hydraulic conductivity tests were performed on the modified GCL using the flexi-wall permeameter. The results suggest that the lowest hydraulic conductivity of 4.58 x 10-(10) m/s is obtained when 25% of BCS is blended with bentonite and an optimum 8% CMC and further addition of BCS results in the reduction of the hydraulic conductivity.

期刊论文 2024-04-01 DOI: 10.2166/wst.2024.093 ISSN: 0273-1223

Biomass-based alternatives to soil improvement by cement in geotechnical applications are increasingly considered owing to their renewability and low carbon footprint. We have elaborated a method of soil improvement by which soil is treated with self-organizing biomass-derived polyions, carboxymethyl cellulose (CMC), and chitosan (CS) and is consequently compacted by rammer. CMC and CS interact electrostatically and self-assemble into interpolyelectrolyte complexes (IPEC) having the morphology of thin films imparting the superior mechanical properties to the soil composite. Curing of soil with CMC and CS at m(CMC+CS)/m(soil) ratios below 1% and compaction improved the unconfined compressive strength (qu) of soil up to 500 kPa in a wet state (ca. 17% moisture content) and 2.5 MPa in a dry state (ca. 0% moisture content). Due to the superior complexing properties of CMC and CS towards transition metal ions, soil treatment with IPEC notably suppressed the leaching of Cu2+, Pd2+, and Cd2+ metal ions from the soil. Despite the intrinsic biodegradability of CMC and CS, their IPEC complexes and soil-IPEC composites showed good resistance toward biodegradation by the cellulase enzyme. Excellent soil reinforcement, suppressed biodegradability, and chemical functionality of biomass-derived IPECs hold promise in utilizing renewable polymers in geotechnical practices of ground improvement addressing the needs of the sustainable use of resources.

期刊论文 2024-02-01 DOI: 10.1016/j.jece.2023.111676 ISSN: 2213-2929
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-10条  共10条,1页