共检索到 2

Carbendazim (CBZ) is a highly effective benzimidazole fungicide; however, its excessive use poses significant risks to the environment and nontarget organisms. To mitigate this issue, in this study, we developed environmentally friendly antifungal mulch films that exhibited controlled CBZ release. The films were prepared using a tape-casting technique, incorporating 21.32 % CBZ-loaded halloysite nanotubes, ultramicrocrushed sorghum straw powder, corn starch, polyvinyl alcohol, and glycerol. This unique combination not only enhanced the environmental compatibility of the films but also leveraged the synergistic properties of the components. The resulting mulch films had excellent mechanical properties (maximum tensile load of 28.9 N) and barrier performance (water vapor transmission rate of 253.22 g/(m2 & sdot;d)), fully complying with the Chinese standard for biodegradable agricultural mulch films (GB/T 35795-2017). Additionally, the films demonstrated remarkable antifungal efficacy and controlled-release behavior, following a first-order release model with a cumulative release rate of 81.43 % CBZ over 18 d. The novelty of this study lies in the integration of CBZ-loaded halloysite nanotubes with a biodegradable matrix to develop multifunctional mulch films that combine antifungal performance, environmental protection, and agricultural sustainability. The controlled release of CBZ reduces its loss and excess release in soil, addressing pollution concerns and minimizing environmental risks. Thus, this study provides insight into the design of advanced agricultural materials that align with global sustainable development goals.

期刊论文 2025-04-01 DOI: 10.1016/j.indcrop.2025.120745 ISSN: 0926-6690

The effect of pesticide pollution on environmental microorganisms in soil has become the focus of widespread concern in society today. The response of earthworm gut and surrounding soil microbial functional diversity and enzyme activity to carbendazim (CBD) was studied in a soil-earthworm ecosystem amended with manure. In the experiment, CBD was added to the manured soil (MS). Meanwhile, the pesticide treatment without manure and the control treatment without pesticides were also set up. The activities of catalase (CAT) and acetylcholinesterase (AChE) were measured to evaluate the toxicity of CBD. The Biolog method was used to assess the functional diversity of the microbial community. In the 2 mg/kg CBD treatment, earthworm AChE activity decreased significantly in the MS after 14 d, which occurred earlier than in the un-manured soil (NS). The changes of earthworm CAT activity in the pesticide treatments showed a trend of initially increasing and then maintaining at a high activity level. However, the CAT activities at 28 d in the manured soils were clearly lower than that at 7 d for both the CBD treatments, while they remained stable in the control treatments. The carbon source utilization, Simpson index, Shannon index, and McIntosh index of soil microorganisms in the MS treatments were significantly higher than those in the NS treatments. The overall activity of earthworm gut microorganisms in the MS treated with 2 mg/kg CBD was higher than that in the control. Also, CBD treatment (2 mg/kg) increased significantly the Simpson index and McIntosh index of earthworm gut microorganisms. The results indicated that the enzyme activities in the manured soils increased before 7 d for the pesticide treatments. Furthermore, exposure to CBD at a high concentration in the MS not only led to the earlier inhibition of earthworm enzyme activity but also significantly improved the overall activity of earthworm gut microorganisms and microbial functional diversity. This study revealed the ecotoxicological effects of earthworms in response to pesticide stress following the use of organic fertilizers under facility environmental conditions, which can provide a theoretical basis for the remediation of pesticide pollution in soil in the future.

期刊论文 2024-10-01 DOI: 10.3389/fmicb.2024.1461880
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页