To address the issue of the single-crop adaptability of current head-forming leafy vegetable harvesters in China-which limits their ability to harvest multiple vegetable varieties-a universal cabbage-Chinese cabbage harvesting platform was designed. This design was based on the statistical analysis of the physical and planting parameters of major cabbage and Chinese cabbage varieties in Jiangsu and Zhejiang provinces. The harvesting platform adopts a modular design, enabling the harvesting of both Chinese cabbage and cabbage by replacing specific components and adjusting relevant parameters. Through the theoretical analysis of key components, the specific parameters of each part were determined, and a soil-trough harvesting test was conducted. The results of the Chinese cabbage harvesting test showed that at a forward speed of 1 kmh-1 and a conveyor belt speed of 60 RPM, the platform achieved optimal performance, with an extraction success rate of 86.7%, a clamping and conveying success rate of 92.3%, and an operational damage rate of 6.7%. The cabbage soil-trough harvesting test results indicated that when the extraction roller speed was 100 RPM, the conveyor belt speed was 60 RPM, and the forward speed was 1 kmh-1, the extraction and feeding success rate reached 93.3%, the conveying success rate was 100%, and the operational loss rate was 6.7%, representing the best overall performance. This study provides theoretical support and references for the design of universal harvesters for head-forming leafy vegetables.
Cyst nematodes are among the major plant-parasitic nematodes worldwide, and they cause significant damage to Brassicaceae crops, including Kimchi-cabbage, in Korea. To survey the incidence of cyst nematodes in Kimchi-cabbage fields, 469 soil samples were collected from the main producing areas between 2018 and 2021. Only cyst nematodes belonging to the genus Heterodera were investigated, and the overall nematode incidence was found to be 40%. Regionally, the highest incidence was observed in Taebaek, reaching 89%, with mean densities of cysts and eggs per 500 cm3 of soil recorded at 522 and 49,734, respectively. Based on Bayesian analysis of the mitochondrial DNA cytochrome c oxidase subunit I gene sequence, the cyst nematodes were identified as four species: clover cyst nematode (Heterodera schachtii, 4%), and white soybean cyst nematode (H. sojae, HSo, 2%). Mixed infestations were found in some fields, with HT + HG (4%) and HG + HSo (1%). These results indicate that HT is the dominant species in the main Kimchi-cabbage producing areas in Korea. In conclusion, implementing effective HT management strategies is critical to minimize economic losses in Kimchi-cabbage production in Korea.
Excessive nutrient input in cabbage (Brassica oleracea var. capitata L.) production not only results in wasted fertilizer application and potential decline in quality, but may also fail to further increase yield. Additionally, it can damage the health of the agroecosystem. However, it is unknown whether optimized fertilization can balance all these benefits. Here, a meta-analysis was conducted using a dataset of 72 paired observations in China to synthesize the response of cabbage yield, quality, farmers' income, net ecosystem economic benefit (NEEB), and global warming potential (GWP) to optimized fertilization and its regulators. We found that optimized fertilization significantly increased cabbage yield by average 10 % and farmers' income by average 12 % with 11-23 % less fertilizer applied. Optimized fertilization significantly improved the quality of cabbage, such as soluble sugar and vitamin C. Furthermore, optimized fertilization significantly enhanced NEEB and mitigated GWP to the environment. No significant differences in optimized fertilization effect were found between optimizing the chemical fertilization rate (OCF) and optimizing chemical fertilizer combined with organic fertilizer application (OCFM). The ratio of N application rate between optimized fertilization and farmers' fertilizer practice was the dominant driver affecting the yield and quality of cabbage in the OCF treatment. While, there was no uniform factor affecting the yield and quality of cabbage in the OCFM treatment. These results highlight the multiple mechanisms of optimized fertilization methods in controlling yield and quality of cabbage. In future studies, conducting extensive field fertilization trials is essential for gaining insight into how various agronomic practices affect cabbage production. This knowledge will be crucial for optimizing these practices to maximize the comprehensive benefits of vegetable cultivation.
Climate change and environmental pollution have increased the frequency and severity of extreme weather events, exposing plants to multifactorial stress conditions that are poorly understood. While extensive research has explored plant responses to individual stress factors, the impact of combined stresses-such as microplastic (MP) contamination and freeze-thaw cycles-remains largely unexamined. This research investigated how soil microplastic pollution affects the freezing tolerance of cabbage (Brassica oleracea L.), a crop vulnerable to unexpected frosts. Seedlings were grown in soils containing varying MP concentrations (0 %, 2 %, 5 %, and 10 % w/w), and their physiological responses to freezing events (-2.5 degrees C and -3.5 degrees C) were assessed. Our findings revealed that although MP particles were not detected in leaf tissues, MP contamination significantly reduced freezing tolerance in a dose-dependent manner. Plants grown in 10 % MP-treated soil exhibited higher membrane damage, as indicated by increased ion leakage and malondialdehyde levels, and showed more severe oxidative stress, with elevated superoxide (O-2(center dot-)) and hydrogen peroxide (H2O2) accumulation. These stress responses corresponded with suppressed antioxidant enzyme activities, including catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD). Principal component analysis (PCA) demonstrated distinct physiological patterns between control and MP-treated plants, emphasizing the disruptive impact of MP pollution on stress resilience. This study provides the first empirical evidence that soil microplastic contamination compromises plant tolerance to freeze-thaw cycles, highlighting an overlooked risk to crop performance in changing environmental conditions and calling for further research into the long-term ecological consequences of terrestrial MP pollution.
Trap crops and entomopathogenic fungi can provide partial solutions for integrated pest management, by attracting and killing insect pests, respectively, but both solutions have some limitations restricting their practical field applications. Both solutions have been tested against a major soil-borne pest of brassicaceous vegetables, the cabbage root fly Delia radicum. Chinese cabbage is very attractive to this pest, but it is also a high-quality host plant for developing larvae of D. radicum, which limits the application as a trap crop in the field. The entomopathogenic fungus Metarhizium brunneum can infect D. radicum larvae in the soil, but M. brunneum has not proved to be sufficiently effective in reducing damages caused by cabbage root fly. In the present work, we evaluated whether the entomopathogenic fungus M. brunneum can be used to regulate D. radicum populations together with trap crops by inoculating Chinese cabbage and broccoli plants at sowing with M. brunneum colonized rice grains before transplantation of small plants to field soil. The evaluation was performed under natural fly infestation. In both plant treatments, D. radicum infestations were high with no or only moderate effect of the fungus inoculation on the number of larvae and pupae recorded, despite evidence of successful fungal infections. On broccoli plants, our results clearly demonstrated that the M. brunneum application was inefficient in reducing number of D. radicum stages in the soil and resulting plant mortality. However, in the trap crop, Chinese cabbage, M. brunneum inoculation reduced the number of D. radicum imagos emerging from the plants by 36%. Hence, the strategy is likely to have effects on the next D. radicum generation. This result is the first to indicate complementarity between the 'attract' and 'kill' strategies to control pest development inside a favorable trap crop and prevent future pest population outbreaks. Also, from both plant inoculation treatments, some emerging D. radicum imagos developed M. brunneum infection, which may assist the transmission of the entomopathogenic fungus among adult populations.
The root-knot nematode, Meloidogyne incognita, poses a significant economic threat as an endoparasite for various vegetables, including cabbage. Utilizing botanicals is an essential aspect of green technology to combat root-knot nematode infection. This study investigates the efficacy of four botanicals (Oxalis corniculata, Ricinus communis, Lantana camara, and Pluchea lanceolata) as emerging phyto-nematicides against M. incognita using both in vitro experiments (J2 mortality after 24, 36 and 48 hours exposure to 3000, 2000, 1000, 500, and 0 mg/L of the four botanicals and then determination egg hatching of M. incognita after 3 and 5 days incubation with various concentrations of the selected botanicals) and pot experiments. In the in vitro study, different extracts from the leaves of botanicals were applied to the second juvenile stage (J2) of M. incognita. The highest mortality of J2 and reduction in egg hatching for O. corniculata extract (89.96 and 86.79%), while the lowest effects (9.01 and 11.50 %) were observed for P. lanceolata extract. The extract of O. corniculata caused complete damage to the morphology of J2 via rupturing the cuticle of posterior, middle, and interior portion. In the pot experiment, M. incognita adversely affected growth shoot length (51.37%), root length (55.10%), fresh head weight (63.14%), and dry head weight (61.79%) by down-regulation of biochemical and epidermal traits compared to un-inoculated plants. However, the soils amended with botanicals especially O. corniculata recorded highest retardation of M. incognita infestation in cabbage roots, hence improved the growth and yield compared to the infected plants. The most beneficial effect denoted by O. corniculata at 100 g/pot on the infected cabbage plants associated with improving carotenoids (83%), chorophyll (117%), and nitrate reductase activity (79%) compared to stressed plants only. Also, O. corniculata at 100 g/pot maximally increased the number of stomata (130%), lengths (87%), and width (141%) of stomatal pore infected cabbage plants compared to the infected plants. These findings recommended the importance of O. corniculata as an eco-friendly organic phyto-nematicide that effectively restrict the damaging impacts of M. incognita on cabbage and may be other crops.
Cd (cadmium) is a highly toxic heavy metal pollutant often present in soil and detrimentally impacting the production and quality of horticultural crops. Cd affects various physiological and biochemical processes in plants, including chlorophyll synthesis, photosynthesis, mineral uptake and accumulation, and hormonal imbalance, leading to cell death. The MYB family of transcription factors plays a significant role in plant response to environmental influences. However, the role of MYB116 in abiotic stress tolerance remains unclear. In this study, we reported that Chinese cabbage transcription factor BrMYB116 enhanced Cd stress tolerance in yeast. The expression level of BrMYB116 was increased by Cd stress in Chinese cabbage. Additionally, yeast cells overexpressing BrMYB116 showed improved Cd stress tolerance and reduced Cd accumulation. Moreover, we found that BrMYB116 interacted with facilitator of iron transport (FIT3) to enhance Cd stress tolerance. ChIP-qPCR results showed that ScFIT3 was activated through specific binding to its promoter. Additionally, the overexpression of ScFIT3 induced Cd stress tolerance and reduced Cd accumulation in yeast and Chinese cabbage. These results suggest new avenues for plant genomic modification to mitigate Cd toxicity and enhance the safety of vegetable production.
Corn steep liquor-assisted microbial remediation has been proposed as a promising strategy to remediate cadmium (Cd)-contaminated soil. In this study, we determined Bacillus subtilis (K2) with a high cadmium (Cd) accumulation ability and Cd resistance. However, studies on this strategy used in the Cd uptake of Chinese cabbage are lacking, and the effect of the combined incorporation of corn steep liquor and K2 on the functions and microbial interactions of soil microbiomes is unclear. Here, we study the Cd uptake and transportation in Chinese cabbage by the combination of K2 and corn steep liquor (K2 + C7) in a Cd-contaminated soil and corresponding microbial regulation mechanisms. Results showed that compared to inoculant K2 treatment alone, a reduction of Cd concentration in the shoots by 14.4% and the dry weight biomass of the shoots and the roots in Chinese cabbage increased by 21.6% and 30.8%, respectively, under K2 + C7 treatment. Meanwhile, hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels were decreased by enhancing POD and SOD activity, thereby reversing Cd-induced oxidative damage. Importantly, inoculation of K2 would decrease the diversity of the microbial community while enhancing the abundance of dominant species. These findings provide a promising strategy for reducing the Cd accumulation in Chinese cabbage and recovering soil ecological functions.
This study was conducted during 2021-2022 to detect and determine distribution and population of cyst nematodes, Heterodera spp. (Tylenchida: Heteroderidae) in black cabbage Brassica oleracea var. acephala L. (Brassicales: Brassicaceae) production areas of the Eastern Black Sea Region of T & uuml;rkiye. For it, a total of 77 samples were taken from 53 districts belonging to the Artvin, Giresun, Ordu, Rize, and Trabzon provinces in the region. Soil samples were taken from around the root of the kale plants. Nematodes were extracted by using the centrifugal flotation technique. The nematodes were identified using morphological features and molecular analysis based on Polymerase Chain Reaction (PCR) method. For molecular analysis, the ribosomal DNA region including the gene region of 28S ribosomal RNA (rRNA) (ITS1, 5.8S, ITS2) was amplified using primer sets TW81/AB28. Additionally, a species-specific primer set (Car-F/Car-R) covering the Cytochrome Oxidase I (cox1) region of mitochondrial DNA (mtDNA) was used. As a result of the analysis, cyst nematodes Heterodera cruciferae Franklin, 1945 , Heterodera carotae Jones, 1950 and Heterodera fici Kirjanova, 1954 species were identified in the kale production areas in the region. Heterodera carotae is the first record of the cyst nematode species in T & uuml;rkiye. Heterodera cruciferae, H. carotae, and H. fici were detected from the total collected soil samples at 16.9%, 3.9%, and 1.3% relative frequency, respectively. Among all, Giresun was the most infected province with 35.3% infection rate, followed by Trabzon with 26.3%, Ordu with 21.1% and Rize with 13.3%.