共检索到 2

This paper proposes a carbon fiber reinforced polymer (CFRP) retrofitting scheme for improving the seismic performance of atrium-style metro stations (AMS). Past experimental studies have confirmed that the weakest of the AMS during strong earthquakes is located at the upper-story beam ends. However, there is thus far no candidate for a reference approach to retrofitting and strengthening the AMS. This study addresses this gap by applying CFRP retrofitting to both ends of the upper-story beam. The main objective is to assess the effectiveness of the proposed retrofitting scheme. First, a three-dimensional finite element model is developed to simulate dynamic soil-AMS interaction. The validity of the numerical method is assessed via a comparison with measured data from reduced-scale model tests. Second, a numerical model of the AMS retrofitted with CFRP is built using validated methods. Finally, dynamic time-history analyses of the AMS with and without CFRP retrofitting are conducted, and their dynamic responses, including inter-story drift, dynamic strain, and tensile damage, in conjunction with the lateral displacement of the surrounding ground, are compared. Comparison of the results for the non-retrofitted and retrofitted structures shows that CFRP retrofitting significantly reduces both the principal strains and tensile damage factors at the upper-story beam ends while slightly increasing those values at the mid-span of the beam; additionally, it does not change the structural lateral deformation. Therefore, it can be concluded that CFRP retrofitting could effectively improve the seismic performance of the AMS without changing its lateral stiffness.

期刊论文 2025-10-01 DOI: 10.1016/j.soildyn.2025.109535 ISSN: 0267-7261

A series of numerical simulations were completed to investigate the behavior of intact, fire -damaged, and Carbon Fiber -Reinforced Polymers (CFRP) retrofitted reinforced concrete (RC) bridge columns of varying sizes subjected to vehicle collisions. Three-dimensional finite element models of isolated RC columns and their foundation systems surrounded by soil volumes were developed using LS-DYNA. A comprehensive parametric study was carried out to investigate the effects of nine demand and design parameters on the performance of bridge columns. Studied parameters included: column diameter, column height, unconfined compressive strength, steel reinforcement ratio, fire duration, CFRP wrap thickness, wrapping configuration, vehicle 's mass, and vehicle 's speed. For each studied scenario, Peak Twenty-five Milli -second Moving Average ( PTMSA ) was employed to estimate the Equivalent Static Force ( ESF ) corresponding to each vehicle collision scenario. Resulting ESF s were then utilized to assess effectiveness of the current ESF approach available in the American Association of State Highway and Transportation Officials Load and Resistance Factor Design ( AASHTO-LRFD ) Bridge Design Specification for analyzing and helping design bridge columns under vehicle collision. Multivariate nonlinear regression analyses were used to derive an empirically based, simplified equation to predict the ESF that corresponds to a vehicle collision. Rather than constant design force, this equation established a correlation between ESF and kinetic energy, column axial capacity, and column height. Results indicated that the proposed equation is reliable and can accurately predict ESF s over a diverse range of collision scenarios that included intact, fire damaged, and CFRP retrofitted columns. To facilitate realistic implementation of the derived equation, an ESF assessment framework was also devised.

期刊论文 2024-09-01 DOI: 10.1016/j.engstruct.2024.118250 ISSN: 0141-0296
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页