The significant uncertainties of Black Carbon (BC) radiative forcing are becoming an obstacle to the evaluation of their impacts and mitigation measures. One of the crucial reasons for this uncertainty could be the poorly constrained BC vertical profile. The BC has a lifetime of a few days to weeks and there is a clear pointer that it can be vertically transported through convection besides the horizontal advection. The present study aims for the intercomparison between the BC mass concentrations obtained through the aircraft-based observations and that derived from the selected Copernicus Atmosphere Monitoring Service (CAMS) reanalysis data over the three different locations of India, which is one of the largest emitters of BC aerosols. The aircraft-based BC observations were conducted from 0.5 to 7 km altitudes using Aethalometer during CAIPEEX (Cloud Aerosol Interaction and Precipitation Enhancement Experiment) Phase I campaigns from June to September 2009. The output of the present study suggests the CAMS reanalysis data significantly underestimated BC mass throughout the vertical profile with an average mass normalized mean bias of greater than -70% at all three locations. Furthermore, the vertical radiative forcing and heating rates of BC were also calculated for both observation and reanalysis data. The output depicts the net forcing due to CAMS simulated BC in all the layers were 1-12 folds lower over all the study regions compared with observed BC aerosols. Likewise, the estimated mean biases in heating rate were in the range of -0.001 to -0.190 K day(-1) for all the vertical layers over the study locations. The possible reasons for these disparities could be poorly constrained emissions, especially aircraft emissions and/or their transformation schemes in aerosol modules. The present study emphasized that the validation of the vertical profile is also an essential factor for better constraints of the BC aerosols in climate models.
A comprehensive global investigation on the impact of reduction (changes) in aerosol emissions due to Coronavirus disease-2019 (COVID-19) lockdowns on aerosol single scattering albedo (SSA) utilizing satellite observations and model simulations is conducted for the first time. The absolute change in Ozone Monitoring Instrument (OMI) retrieved, and two highly-spatially resolved models (Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA-2) and Copernicus Atmosphere Monitoring Service (CAMS)) simulated SSA is <4% (<0.04-0.05) globally during COVID (2020) compared to normal (2015-2019) period. Change in SSA during COVID is not significantly different from long-term and year-to-year variability in SSA. A small change in SSA indicates that significant reduction in anthropogenic aerosol emissions during COVID-19 induced lockdowns has a negligible effect in changing the net contribution of aerosol scattering and/or absorption to total aerosol extinction. The changes in species-wise aerosol optical depth (AOD) are examined in detail to explain the observed changes in SSA. Model simulations show that total AOD decreased during COVID-19 lockdowns, consistent with satellite observations. The respective contributions of sulfate and black carbon (BC) to total AOD increased, which resulted in a negligible change in SSA during the spring and summer seasons of COVID over South Asia. Europe and North America experience a small increase in SSA (<2%) during the summer season of COVID due to a decrease in BC contribution. The change in SSA (2%) is the same for a small change in BC AOD contribution (3%), and for a significant change in sulfate AOD contribution (20%) to total AOD. Since, BC SSA is 5-times lower (higher absorption) than that of sulfate SSA, the change in SSA remains the same. For a significant change in SSA to occur, the BC AOD contribution needs to be changed significantly (4-5 times) compared to other aerosol species. A sensitivity analysis reveals that change in aerosol radiative forcing during COVID is primarily dependent on change in AOD rather than SSA. These quantitative findings can be useful to devise more suitable future global and regional mitigation strategies aimed at regulating aerosol emissions to reduce environmental impacts, air pollution, and public health risks.
Europe has experienced many extreme heat waves over the past few decades. In this study, the physical processes underlying these long-lasting and wide-ranging heat wave events are investigated based on a case study in Europe in June 2021. Heat waves are associated with barotropic anticyclonic anomalies accompanied by positive geopotential height anomalies locally. These anomalies persist under the conditions of increased meridional air temperature gradients of the mid-upper troposphere in the high latitudes of Eurasia and the formation of the Arctic front jet. The shrinking high-latitude snow cover in April-May favors higher surface temperatures and larger meridional temperature gradients in June in the mid-upper troposphere due to the soil moisture-evaporation-temperature positive feedback process. The summer Arctic front jet is then strengthened, and the mid-latitude westerly winds are weakened. This atmospheric circulation background favors waveguide formation and wave resonance that produces high-amplitude atmospheric waves and the stagnation of ridges in the midlatitudes. Numerical experiments using the Community Atmosphere Model version 5 verify the proposed physical mechanisms, with the climatic responses in sensitivity experiments to anomalous snowfall rates closely resembling the observational results. Therefore, in June 2021, under the identified atmospheric circulation background and the perturbation of the upstream positive phase of the North Atlantic Oscillation, the large-scale barotropic high pressure and barotropic anticyclonic circulation in the study region tended to be stable and persistent, which is favorable for the production of long-lasting and wide-ranging heat wave events.
A comprehensive investigation of physical, optical, and chemical characteristics of columnar aerosols over two locations with distinct environmental settings in the Indo-Gangetic Plain (IGP) region, namely, Kanpur (urban and industrial area) and Gandhi College (rural area), is conducted using high-quality aerosol datasets obtained from ground-based Aerosol Robotic Network (AERONET) observations during the recent five year period (2015-2019). This study utilizes all the crucial columnar aerosol parameters necessary for accurately estimating aerosol radiative forcing. Quantification of contribution by different aerosol species originating from natural and anthropogenic sources to the total aerosol optical depth (AOD) and single scattering albedo (SSA) is important to understand the specific mechanisms that influence the aerosol composition, thereby reducing the uncertainty in aerosol radiative forcing. For the first time, two highly spatially resolved models' (Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA-2) and Copernicus Atmosphere Monitoring Service (CAMS)) simulated absorbingspecies-wise (black carbon (BC), dust, and brown carbon (BrC)) AOD, and absorption AOD (AAOD) are compared and contrasted against the AERONET observations over the IGP region in a systematic manner. MERRA-2 AODs are mostly lower, whereas CAMS AODs are consistently higher than the AERONET AODs. A comparison of collocated time and space observations with models clearly suggests that improvements in emission inventories on a seasonal scale are essential. MERRA-2 SSA is noted lower than the AERONET SSA during the winter season due to overestimation in BC AOD. During winter in >70% of MERRA-2 simulated SSA the difference is higher than +/- 0.03 (the uncertainty range of AERONET SSA) whereas during pre-monsoon and monsoon seasons >60% of MERRA-2 SSA lies within the uncertainty range of AERONET SSA. Both models show a gradient in AODDust decreasing from west to east in the IGP. However, observations do not often exhibit the gradient in dust, which is validated by air mass back trajectory analyses as air masses travel through different pathways to IGP and reverse the west to east gradient in AODDust. This quantitative and comparative collocated analysis of observed aerosol characteristics with models on a seasonal scale will enable a better estimation of aerosol radiative forcing, and can help improve aerosol processes and parameterizations in models.
The soils of Arctic regions are of great interest due to their high sensitivity to climate change. Kvartsittsletta coast in the vicinity of the Baranowski Research Station of the University of Wroclaw constitutes a sequence of differently aged sea terraces covered with different fractions of beach material. It is a parent material for several developing soil types. Despite the low intensity of the modern soil-forming processes, the soil cover is characterized by high diversity. Soil properties are formed mainly by geological and geomorphological factors, which are superimposed by the influence of climate and living organisms. The degree of development of soil is usually an indicator of its relative age. This article highlights the dominant influence of lithology and microrelief over other soilforming factors, including the duration for which the parent material was exposed to external factors. The soils on the highest (oldest) terrace steps of the Kvartsittsletta rarely showed deep signs of soil-forming processes other than cryoturbations. On the youngest terraces, deep-reaching effects of soil processes associated with a relatively warm climate, including the occurrence of cambic horizons, were observed. Their presence in Arctic regions carries important environmental information and may be relevant to studies of climate change.
Dust transport and spatial distribution are poorly represented in current global climate models (GCMs) including the Community Atmosphere Model version 5 (CAM5). Particularly, models lack explicit representation of super-coarse dust, which may have important implications for dust radiative forcing and impacts on biogeochemistry. A nine-mode version of the modal aerosol model (MAM9) has been developed to address these issues. In this new aerosol scheme, four dust modes have been designed to treat dust particles of sizes up to 20 mu m. The MAM9-simulated results are compared with those from the default four-mode version of MAM (MAM4) and also with the in situ surface measurements of dust concentration and deposition flux, satellite-retrieved dust extinction profile, and in situ vertical measurements of dust concentrations from the NASA Atmosphere Tomography Mission (ATom). Overall, MAM9 improves the dust representation in remote regions while maintaining reasonably good results near the dust source regions. In addition, MAM9 reduces the fine dust burden and increases the coarse dust burden globally. The increased coarse dust burden has slightly increased the dust direct radiative effect by 0.01 W m(-2) while it enhanced dust indirect radiative effect by 0.36 W m(-2), globally.
Studies in aerosol properties, types and sources in the Himalayas are important for atmospheric and climatic issues due to high aerosol loading in the neighboring plains. This study uses in situ measurements of aerosol optical and microphysical properties obtained during the Ganges Valley Aerosol eXperiment (GVAX) at Nainital, India over the period June 2011-March 2012, aiming to identify key aerosol types and mixing states for two particle sizes (PM1 and PM10). Using a classification matrix based on SAE vs. AAE thresholds (scattering vs. absorption Angstrom exponents, respectively), seven aerosol types are identified, which are highly dependent on particle size. An aerosol type named large/BC mix dominates in both PM1 (45.4%) and PM10 (46.9%) mass, characterized by aged BC mixed with other aerosols, indicating a wide range of particle sizes and mixing states. Small particles with low spectral dependence of the absorption (AAE < 1) account for 31.6% and BC-dominated aerosols for 14.8% in PM1, while in PM10, a large fraction (39%) corresponds to large/low-absorbing aerosols and only 3.9% is characterized as BC-dominated. The remaining types consist of mixtures of dust and local emissions from biofuel burning and display very small fractions. The main optical properties e.g. spectral scattering, absorption, single scattering albedo, activation ratio, as well as seasonality and dependence on wind speed and direction of identified types are examined, revealing a large influence of air masses originating from the Indo-Gangetic Plains. This indicates that aerosols over the central Himalayas are mostly composed by mixtures of processed and transported polluted plumes from the plains. This is the first study that identifies key aerosol populations in the central Indian Himalayas based on in situ measurements and the results are highly important for aerosol-type inventories, chemical transport models and reducing the uncertainty in aerosol radiative forcing over the third pole. (C) 2020 Elsevier B.V. All rights reserved.
The annual balance of biogenic greenhouse gases (GHGs; carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) in the atmosphere is well studied. However, the contributions of specific natural land sources and sinks remain unclear, and the effect of different human land use activities is understudied. A simple way to do this is to evaluate GHG soil emissions. For CO2, it usually comprises 60-75% of gross respiration in natural terrestrial ecosystems, while local human impact can increase this share to almost 100%. Permafrost-affected soils occupying 15% of the land surface mostly in the Eurasia and North America contain approximately 25% of the total terrestrial carbon. The biogenic GHG soil emissions from permafrost are 5% of the global total, which makes these soils extremely important in the warming world. Measurements of CO2, methane, and nitrous oxide, from eighteen locations in the Arctic and Siberian permafrost, across tundra, steppe, and north taiga domains of Russia and Svalbard, were conducted from August to September during 2014-2017 in 37 biotopes representing natural conditions and different types of human impact. We demonstrate that land use caused significant alteration in soil emission and net fluxes of GHGs compared to natural rates, regardless of the type and duration of human impact and the ecosystem type. The cumulative effect of land use factors very likely supported an additional net-source of CO2 into the atmosphere because of residual microbial respiration in soil after the destruction of vegetation and primary production under anthropogenic influence. Local drainage effects were more significant for methane emission. In general, land use factors enforced soil emission and net-sources of CO2 and N2O and weakened methane sources. Despite the extended heat supply, high aridity caused significantly lower emissions of methane and nitrous oxide in ultra-continental Siberian permafrost soils. However, these climatic features support higher soil CO2 emission rates, in spite of dryness, owing to the larger phytomass storage, presence of tree canopies, thicker active layer, and greater expressed soil fissuring. Furthermore, the Birch effect was much less expressed in ultra-continental permafrost soils than in permafrost-free European soils. Models and field observations demonstrated that the areal human footprint on soil CO2 fluxes could be comparable to the effect of climate change within a similar timeframe. Settlements and industrial areas in the tundra function as year-round net CO2 sources, mostly owing to the lack of vegetation cover. As a result, they could compensate for the natural C-balance on significantly larger areas of surrounding tundra. (C) 2020 Elsevier B.V. All rights reserved.
Hourly ground temperature measurements from the highest shallow ground temperature monitoring system on Earth and sedimentological data were used to construct a thermal model at the Ojos del Salado, in the Dry Andes (5830 m a.s.l.). The results were used to investigate daily temperature fluctuations and the phase changes of water in the regolith, where the permafrost and ground ice are present. Model results reveal that the thermal evolution of the ground and the speed of phase changes are determined by the differing thermal properties of liquid and solid water, and change in their vertical distribution over time. At the start of summer, the increasing ratio of liquid water near the surface insulates deeper layers, and thus, melting is delayed and daily temperature fluctuations are damped in the regolith. The approach of the present study includes testing how simple, relatively low processing power required data analysis might be applied for Mars in the future. Periglacial and aeolian landforms were also surveyed, with a focus on thermo- and cryokarstic features, as previous studies have shown that patterned ground structures are rare in the region due to the highly porous nature of the dry regolith. Besides the wealth of aeolian features, gravel mantled megaripples, solifluction lobes, and thermo- and cryokarstic depressions, were found. In the case of the former, a close association with ephemeral ponds-hosting extremophilic microorganisms-was found, highlighting the fact that meltwater percolates horizontally even in this extremely dry environment. The thermo- and cryokarstic depressions also reveal the role of melting and its intricate connection to sublimation. As these features indicate degrading permafrost, closer investigation may provide useful analogs for earlier and contemporary climatic changes on Mars.
A version of the Community Earth System Model modified at the North Carolina State University (CESM-NCSU) is used to simulate the current and future atmosphere following the representative concentration partway scenarios for stabilization of radiative forcing at 4.5 W m(-2) (RCP4.5) and radiative forcing of 8.5 W m(-2) (RCP8.5). Part I describes the results from a comprehensive evaluation of current decadal simulations. Radiation and most meteorological variables are well simulated in CESM-NCSU. Cloud parameters are not as well simulated due in part to the tuning of model radiation and general biases in cloud variables common to all global chemistry-climate models. The concentrations of most inorganic aerosol species (i.e., SO42-, NH4+, and NO3-) are well simulated with normalized mean biases (NMBs) typically less than 20%. However, some notable exceptions are European NH4+, which is overpredicted by 33.0-42.2% due to high NH3 emissions and irreversible coarse mode condensation, and Cl-, that is negatively impacted by errors in emissions driven by wind speed and overpredicted HNO3. Carbonaceous aerosols are largely underpredicted following the RCP scenarios due to low emissions of black carbon, organic carbon, and anthropogenic volatile compounds in the RCP inventory and efficient wet removal. This results in underpredictions of PM2.5 and PM10 by 6.4-55.7%. The column mass abundances are reasonably well simulated. Larger biases occur in surface mixing ratios of trace gases in CESM-NCSU, likely due to numerical diffusion from the coarse grid spacing of the CESM-NCSU simulations or errors in the magnitudes and vertical structure of emissions. This is especially true for SO2 and NO2. The mixing ratio of O-3 is overpredicted by 38.9-76.0% due to the limitations in the O-3 deposition scheme used in CESM and insufficient titration resulted from large underpredictions in NO2. Despite these limitations, CESM-NCSU reproduces reasonably well the current atmosphere in terms of radiation, clouds, meteorology, trace gases, aerosols, and aerosol-cloud interactions, making it suitable for future climate simulations. (C) 2016 Elsevier Ltd. All rights reserved.