共检索到 4

Insecticide treated seeds are commonly used to reduce yield losses from burrowing insect damage such as wireworms. Using temporal X-ray Computed Tomography (CT) of soil-filled bioassays, we aimed to quantify changes in burrow network production and structure as a measure of wireworm behavioural change in response to three types of insecticide treated maize seed; compound X (R&D &D product in field trial stage of development); tefluthrin and thiamethoxam. A biopesticide alternative treatment (neem), untreated maize seed and bare soil were also investigated. Insect health outcomes were also monitored to provide toxicity/mortality data. Wire- worms exposed to compound X produced greater burrow networks than untreated maize and neem treatments, similar to that in volume of those produced in bare soil. Compound X exposure also elicited the production of more complex burrow structures, a function of the number of vertices, edges and faces of a shape (V-E+F) +F) related to the number of interconnected branches, compared to any other treatments. Compound X, tefluthrin and thiamethoxam induced mortality at greater rates than neem or untreated, suggesting all three could have potential to manage wireworm populations and reduce yield loss, but only compound X modified burrowing behaviour. With soil biopores playing an important role in soil productivity and carbon sequestration, the wider implications of this increase in burrowing activity for food security and climate change warrants further exploration.

期刊论文 2024-11-01 DOI: 10.1016/j.pedobi.2024.151000 ISSN: 0031-4056

The burrowing activity of plateau pikas (Ochotona curzoniae; hereafter, pikas) may profoundly influence vegetation species composition on the Qinghai-Tibetan Plateau (QTP). Although significant efforts have been made to examine the relationship between vegetation species composition and pikas disturbance, our knowledge regarding the direct influence of pikas activity on vegetation species diversity is still limited. We conducted field observations on pikas burrows and surrounding vegetation patches at 23 alpine grassland sites to investigate this effect. When compared to vegetation patches, pikas burrowing activity decreased soil hardness, thus improving water infiltration, while caused the less reduction of soil nutrition and soil moisture when compared to adjacent vegetation patches. Vegetation species composition on pikas burrows significantly differed from that on vegetation patches. Common plant species between pikas burrows and vegetation patches were fewer than three in all types of grasslands, and ten species were found exclusively on pikas burrows. The total species richness, including both pikas burrows and vegetation patches, was approximately 1.3-2.5 times higher than that on each single patch type (pikas burrows or vegetation patches). A conceptual framework was proposed to synthesize the evolution of vegetation species composition under a disturbance regime resulting from pika's burrowing. Overall, we concluded that pika's burrowing activity enhanced vegetation species richness by loosening the soil, creating safe sites for seed settling and germination, which provided a novel habitat for vegetation invasion.

期刊论文 2024-10-01 DOI: http://dx.doi.org/10.1016/j.gecco.2021.e01806

Simple Summary Four families (Cydnidae, Parastrachiidae, Thaumastellidae, and Thyreocoridae) in the superfamily Pentatomoidea are morphologically defined by a similar body outline and the presence of a series of stout setae on the distal margin of the coxae. These structures, called coxal combs, are thought to protect the coxal-trochanteral articulation from damage caused by soil and sand particles and have not been observed in other true bugs (Hemiptera: Heteroptera). Therefore, they have been consistently considered a synapomorphy for these four families. However, their independent origin in these families has been suggested by nuclear ribosomal DNA sequence analysis (28S rDNA and 18S rDNA). This study investigated whether the analysis of mitochondrial 16S ribosomal DNA sequences would confirm these results. In addition, we examined whether any group of species possessing the coxal combs could be considered a well-supported independent monophylum.Abstract Coxal combs, found only in members of the 'cydnoid' complex (comprising four families: Cydnidae, Parastrachiidae, Thaumastellidae, and Thyreocoridae) within the superfamily Pentatomoidea, have long been regarded as a character confirming their close evolutionary relationship. However, many studies have demonstrated that these four families are phylogenetically distant. Others have been treated as subfamilies of the broadly defined Cydnidae, with the coxal combs as the only character linking them. This is the first study on the origin of coxal combs in species of all families and subfamilies that represent the broadly conceived Cydnidae (69 species in 39 genera). Moreover, this study presents the first 16S rDNA gene sequences providing a basis for such analyses. The analyses included DNA sequences of 62 species in 34 genera of Cydnidae sensu stricto, three species in two genera of Thyreocoridae, two species in two genera of Parastrachiidae, and two species in one genus of Thaumastellidae. The sequence analysis in the family Cydnidae covered 35 species representing 19 genera of the subfamily Cydninae, 16 species in eight genera of the subfamily Sehirinae, five species in two genera of Amnestinae, three species in three genera of Garsauriinae, two species in one genus of Cephalocteinae, and one species of Amaurocorinae. The results of our study demonstrate the independent origin of coxal combs in taxa of the 'cydnoid' complex within the superfamily Pentatomoidea. They confirm the polyphyly not only of the entire 'cydnoid' complex but also of the family Cydnidae itself.

期刊论文 2024-10-01 DOI: 10.3390/insects15100792

Traditional geotechnical engineering is challenged in terms of sustainability, resilience, reliability and resources availability in the context of climate change and urbanization expansion. Abstracting inspiration from nature and adopting to geotechnical engineering, bio-inspired geotechnics can provide innovative solutions to address these challenges. This paper reviews the underlying mechanics of bio-inspired geotechnical engineering from three perspectives, i.e., bio-inspired burrowing strategies and mechanisms, bio-inspired surfaces with textures and bio-inspired underground structures. The results highlight that the bio-inspired burrowing strategies (i.e., particle removal, chiseling/grabbing-pushing, peristalsis, dual-anchor, pivot burrowing, undulatory propulsion, reciprocating, rotation and root growth) differ in their application scopes and burrowing efficacy, and the auxiliary burrowing, the principle of least impendence, as well as the multi-functional root growth presents promising solutions to burrowing challenges. Bio-inspired textured surfaces exhibit performance enhancement with regard to anisotropic friction, wear resistance and actuator initiation. In bio-inspired underground structures, snakeskin- and root-inspired geotechnical elements provide superior performance due to the frictional anisotropy and branching effects, respectively, and the potential implementation techniques are challenging current geotechnical engineering. Finally, transferring issues, potential research trends and future prospects are presented, and the significance of collaborative engagement of both engineers and scientists for promotion in bio-inspired geotechnics is emphasized. (c) 2024 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

期刊论文 2024-06-01 DOI: 10.1016/j.gr.2023.12.018 ISSN: 1342-937X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页