共检索到 101

The Upper Silesian Coal Basin faces ongoing challenges with self-heating in coal waste dumps, a problem that leads to dangerous and unpredictable subsurface fires. This study investigates the thermal dynamics and vegetation response in a coal waste dump, expanding on previous research that links waste temperatures with plant health and distribution. The study area-a small, old coal waste dump located in a highly urbanized area-was subjected to comprehensive environmental monitoring focused on various fire determinants. The findings confirm that coal waste dumps, regardless of size and complexity, experience similar fire determinants, with vegetation colonization progressing in bands starting with pioneer species in less heat-affected areas. As the distance from the fire zone increases, plant density and diversity improve, indicating a recovery in thermally stabilized zones. The study also demonstrates the repeatability of relationships between subsurface temperatures and vegetation status across different coal waste dumps, supporting the use of plants as indicators of underground fires. Elevated subsurface temperatures in thermally active zones lead to clear 'dying' and 'death' zones, where excessive heat damages plant roots, causing die-offs. In contrast, areas with moderate temperatures allow vegetation growth, even in winter, due to favourable root-zone conditions. The study highlights the need for improved monitoring and fire mitigation strategies to address thermal activity in reclaimed sites, especially those with limited historical data. These insights are crucial for preventing similar issues in the future and minimizing the long-term impacts on surrounding communities and ecosystems.

期刊论文 2025-06-05 DOI: 10.1002/ldr.5685 ISSN: 1085-3278

Air pollution is a global health issue, and events like forest fires, agricultural burning, dust storms, and fireworks can significantly worsen it. Festivals involving fireworks and wood-log fires, such as Diwali and Holi, are key examples of events that impact local air quality. During Holi, the ritual of Holika involves burning of biomass that releases large amounts of aerosols and other pollutants. To assess the impact of Holika burning, observations were conducted from March 5th to March 18th, 2017. On March 12th, 2017, around 1.8 million kg of wood and biomass were openly burned in about 2250 units of Holika, located in and around the Varanasi city (25.23 N, 82.97 E, similar to 82.20 m amsl). As the Holika burning event began the impact on the Black Carbon (BC), particulate matter 10 & 2.5 (PM10 and PM2.5), sulphur dioxide (SO2), oxides of nitrogen (NOx), ozone (O-3) and carbon monoxide (CO) concentration were observed. Thorough optical investigations have been conducted to better comprehend the radiative effects of aerosols produced due to Holika burning on the environment. The measured AOD at 500 nm values were 0.315 +/- 0.072, 0.392, and 0.329 +/- 0.037, while the BC mass was 7.09 +/- 1.78, 9.95, and 7.18 +/- 0.27 mu g/m(3) for the pre-Holika, Holika, and post-Holika periods. Aerosol radiative forcing at the top of the atmosphere (ARF-TOA), at the surface (ARF-SUR), and in the atmosphere (ARF-ATM) are 2.46 +/- 4.15, -40.22 +/- 2.35, and 42.68 +/- 4.12 W/m(2) for pre-Holika, 6.34, -53.45, and 59.80 W/m(2) for Holika, and 5.50 +/- 0.97, -47.11 +/- 5.20, and 52.61 +/- 6.17 W/m(2) for post-Holika burning. These intense observation and analysis revealed that Holika burning adversely impacts AQI, BC concentration and effects climate in terms of ARF and heating rate.

期刊论文 2025-06-01 DOI: 10.1016/j.pce.2025.103856 ISSN: 1474-7065

Aerosols emitted from biomass burning affect human health and climate, both regionally and globally. The magnitude of these impacts is altered by the biomass burning plume injection height (BB-PIH). However, these alterations are not well-understood on a global scale. We present the novel implementation of BB-PIH in global simulations with an atmospheric chemistry model (GEOS-Chem) coupled with detailed TwO-Moment Aerosol Sectional (TOMAS) microphysics. We conduct BB-PIH simulations under three scenarios: (a) All smoke is well-mixed into the boundary layer, and (b) and (c) smoke injection height is based on Global Fire Assimilation System (GFAS) plume heights. Elevating BB-PIH increases the simulated global-mean aerosol optical depth (10%) despite a global-mean decrease (1%) in near-surface PM2.5. Increasing the tropospheric column mass yields enhanced cooling by the global-mean clear-sky biomass burning direct radiative effect. However, increasing BB-PIH places more smoke above clouds in some regions; thus, the all-sky biomass burning direct radiative effect has weaker cooling in these regions as a result of increasing the BB-PIH. Elevating the BB-PIH increases the simulated global-mean cloud condensation nuclei concentrations at low-cloud altitudes, strengthening the global-mean cooling of the biomass burning aerosol indirect effect with a more than doubling over marine areas. Elevating BB-PIH also generally improves model agreement with the satellite-retrieved total and smoke extinction coefficient profiles. Our 2-year global simulations with new BB-PIH capability enable understanding of the global-scale impacts of BB-PIH modeling on simulated air-quality and radiative effects, going beyond the current understanding limited to specific biomass burning regions and seasons. Plain Language Summary Biomass burning includes wildfires, prescribed burns, and agricultural burns; and is an important source of aerosol particles in the atmosphere. These aerosol particles are important for climate and human health. Our work contributes to understanding the global and interannual impacts of changing the height of these particles in the atmosphere. We ran multiple global atmospheric chemistry model simulations with each simulation having different heights for aerosol particles from biomass burning. Simulations with a higher average emission height had more smoke aerosol particles in the entire atmosphere, resulting in an increase in the cooling radiative impact of biomass burning compared to simulations with a lower average emission height. We found that simulations with a higher average emission height for biomass burning aerosols had slightly better agreement with satellite observations relative to lower heights. This study shows the importance of biomass burning aerosol emission height on Earth's global air quality and climate.

期刊论文 2025-06-01 DOI: 10.1029/2024MS004849

This work uses a mixture of observations from surface remote sensing (AERONET) and satellite remote sensing (OMI) to uniquely compute the atmospheric column loading of black carbon (BC) mass concentration density (MCD) and number concentration density (NCD) on a grid-by-grid, day-by-day basis at 0.25 degrees x0.25 degrees over rapidly developing and biomass burning (BB) impacted regions in South, Southeast, and East Asia. This mixture of observations is uniformly analyzed based on OMI NO2 retrievals, OMI Near ultraviolet band absorption aerosol optical depth and single scattering albedo (SSA), and AERONET visible and near-infrared band SSA observations, in connection with an inversely applied MIE mixing model approach. This method uniquely solves for the unbiased spatial and temporal domains based on variance maximization of daily NO2. These locations in space and time are then used to quantify the distribution of all possible individual particle core and refractory shell sizes as constrained by all band-by-band observations of SSA from AERONET. Finally, the range of NCD and MCD are computed from the constrained range of per-particle core and refractory shell size on a grid-by-grid and day-byday basis. The maps of MCD and NCD are consistent in space and time with known urban, industrial, and BB sources. The statistical distributions are found to be non-normal, with the region-wide mean, 25th, 50th, and 75th percentile MCD [mg/m2] of 90.3, 56.1, 81.1, and 111 respectively, and NCD [x1012 particles/m2] of 8.76, 4.63, 7.39, and 11.3 respectively. On a grid-by-grid basis, a significant amount of variation is found, particularly over Myanmar, Laos, northern Thailand, and Vietnam, with this subregional mean, 25th, 50th, and 75th MCD [mg/m2] of 90.7, 56.1, 81.3, and 112 respectively and NCD [x1012 particles/m2] of 9.66, 5.49, 8.33, and 12.3 respectively. On a day-to-day basis, events are determined 121 days in 2016, during which the computed statistics of MCD and NCD have mean and uncertainty ranges which scale with each other. However, there are 11 days where the uncertainty ratio of NCD values is larger than 1 while the uncertainty ratio of MCD is small, and 5 days where the reverse is observed, indicating that the particle size is strongly atypical on these days, consistent with mixed aerosol sources, a substantial change in the aerosol aging, or other such factors including a substantial region of overlap between BB and urban sources. The high values observed from March to May lead to an extended BB season as compared to previous work focusing on fire radiative power, NO2, and models, which show a shorter season (usually ending in early April). The results are consistent with BC being able to transport significant distances. The new approach is anticipated to provide support for improving radiative forcing calculations, estimating emissions inventories, and providing a basis by which models can compare against observations.

期刊论文 2024-12-15 DOI: 10.1016/j.rse.2024.114436 ISSN: 0034-4257

Biomass burning play a key role in the global carbon cycle by altering the atmospheric composition, and affect regional and global climate. Despite its importance, a very few high-resolution records are available worldwide, especially for recent climate change. This study analyzes levoglucosan, a specific tracer of biomass burning emissions, in a 38-year ice core retrieved from the Shulehe Glacier No. 4, northeastern Tibetan Plateau. The levoglucosan concentration in the Shulehe Glacier No. 4 ice core ranged from 0.1 to 55 ng mL(-1), with an average concentration of 8 +/- 8 ng mL(-1). The concentrations showed a decreasing trend from 2002 to 2018. Meanwhile, regional wildfire activities in Central Asian also exhibited a declining trend during the same period, suggesting the potential correspondence between levoglucosan concentration of the Shulehe Glacier No. 4 ice core and the fire activity of Central Asia. Furthermore, a positive correlation also exists between the levoglucosan concentration of the Shulehe Glacier No. 4 ice core and the wildfire counts in Central Asia from 2002 to 2018. While backward air mass trajectory analysis and fire spots data showed a higher distribution of fire counts in South Asia compared to Central Asia, but the dominance of westerly circulation in the northern TP throughout the year. Therefore, the levoglucosan in the Shulehe Glacier No. 4 provides clear evidence of Central Asian wildfire influence on Tibetan Plateau glaciers through westerlies. This highlights a great importance of ice core data for wildfire history reconstruction in the Tibetan Plateau Glacier regions.

期刊论文 2024-12-01 DOI: http://dx.doi.org/10.1016/j.envpol.2024.124496 ISSN: 0269-7491

Fire can influence plant diversity directly by damaging or killing individuals or indirectly by changing soil properties. However, the impacts of prescribed burning on biodiversity and the relationship between soil and biodiversity in northeast China remain poorly understood. In this study, we explored the impact of low-intensity prescribed burning on temperate forest ecosystems in northeast China by investigating changes in post-fire plant biodiversity and soil properties and characterising the relationship between these variables. Contrary to previous studies, the results showed that prescribed burning in Pinus koraiensis plantations did not increase understory biodiversity. In contrast, it resulted in a significant decrease in biodiversity over the three-year period. Legumes (especially Lespedeza bicolor) were the understory species that benefitted the most from the fire. Burning changed the connection between soil and plant diversity. After burning, soil organic C overtook nitrate as the main driver of plant biodiversity. Our findings showed that prescribed burning alters soil chemical properties, particularly soil organic C, thus affecting the understory plant composition and biodiversity.

期刊论文 2024-11-01 DOI: 10.1016/j.catena.2024.108478 ISSN: 0341-8162

Farmers' open-field burning of paddy straw and the indoor burning of paddy residues as domestic fuels are significant environmental concerns since they emit dangerous pollutants. The worldwide burning of paddy residues totals 90 million tons (MT). Around 24 MT emanated from India, accounting for approximately 27% of the world's paddy straw burning. Burning residues emit smog particles, polyaromatic amines, nitrous oxides, sulfur dioxide, carbon dioxide, and carbon monoxide, methane, seriously degrading the air quality and risking human health. The combustion of dry paddy straw emits massive volumes of methane and nitrous oxide, 65 and 1.6 kilotons, respectively. This study analyzes the consequences of burning paddy residue outdoors and indoors by reviewing the relevant literature and data. Open-field burning causes air pollution, damages soil health, and harms human health. Indoor burning of paddy residues as domestic fuels harms women's and children's health in rural areas. To mitigate the adverse effects of this practice, we magnified our research using the various literature and recent statistics to link with mushroom cultivation as an alternative to paddy residue burning. Recently, India produced almost 240,000 tons of mushrooms; Odisha, Maharashtra, and Bihar are the three leading states for mushroom production. The cultivation of mushrooms is considered advantageous for both health and the environment. This study has concentrated on mushrooms' economic potential, medicinal value, and health benefits.

期刊论文 2024-09-01 DOI: 10.1002/tqem.22169 ISSN: 1088-1913

The light absorption enhancement (E-abs) of black carbon (BC) coated with non-BC materials is crucial in the assessment of radiative forcing, yet its evolution during photochemical aging of plumes from biomass burning, the globe's largest source of BC, remains poorly understood. In this study, plumes from open burning of corn straw were introduced into a smog chamber to explore the evolution of E-abs during photochemical aging. The light absorption of BC was measured with and without coating materials by using a thermodenuder, while the size distributions of aerosols and composition of BC coating materials were also monitored. E-abs was found to increase initially, and then decrease with an overall downward trend. The lensing effect dominated in E-abs at 520 nm, with an estimated contribution percentages of 47.5%-94.5%, which is far greater than light absorption of coated brown carbon (BrC). The effects of thickening and chemical composition changes of the coating materials on E-abs were evaluated through comparing measured E-abs with that calculated by the Mie theory. After OH exposure of 1 x 10(10) molecules cm(-3) s, the thickening of coating materials led to an E-abs increase by 3.2% +/- 1.6%, while the chemical composition changes or photobleaching induced an E-abs decrease by 4.7% +/- 0.6%. Simple forcing estimates indicate that coated BC aerosols exhibit warming effects that were reduced after aging. The oxidation of light-absorbing CxHy compounds, such as polycyclic aromatic hydrocarbons (PAHs), to CxHyO and CxHyO>1 compounds in coating materials may be responsible for the photobleaching of coated BrC. Plain Language Summary Understanding how black carbon (BC) coated with non-BC materials affects light absorption is crucial for assessing its impact on the Earth's climate. However, there is limited knowledge about how this process changes when BC, particularly from biomass burning, is exposed to light. Biomass burning is a significant global source of BC. This study investigated the changes in light absorption of BC from burning corn straw as it aged in a controlled environment. We measured the light absorption of BC with and without its coating materials. Our results showed that the main cause of increased light absorption was the lensing effect of the coating materials, which was more significant than the light absorption by the coating materials themselves. We also discovered that as the coating materials thickened, BC absorbed more light. However, changes in the chemical composition of the coating materials led to a decrease in total absorption. These findings suggest that while coated BC initially has a warming effect on the climate, this effect diminished as the BC ages. The decrease is likely due to the breakdown of light-absorbing compounds in the coating materials, such as polycyclic aromatic hydrocarbons (PAHs).

期刊论文 2024-08-28 DOI: 10.1029/2024JD040756 ISSN: 2169-897X

Stubble burning is a conventional technique of residue management that has affected the physio-chemical properties of the soils. In soil sciences, dielectric properties of soils using radio and microwave-based remote sensing have huge applications. Thus, presented paper has studied the burning effects of stubble on soil's physical, chemical and dielectric properties ($\varepsilon {{\prime}} $epsilon ' and $\varepsilon {{\prime \prime}}$epsilon ''). Moreover, the experimentally observed soil's dielectric data has been explored with various classical Machine Learning (ML) and Neural Network (NN) based regression models. The soil samples were taken from the fields of Punjab, India, in the October-November months following a multistage soil sampling method. Then, Dak-12 open-ended coaxial probe (DOCP) has been used in alliance with a two-port Vector Network Analyzer (VNA) E5071C, Agilent Technologies, to investigate the dielectric properties of soil samples. The obtained results indicate that physio-chemical and dielectric properties have been strongly affected by burning as well as because of the presence of high concentrations of ash residues.$ \varepsilon {{\prime}} $epsilon ' and $\varepsilon {{\prime \prime}}$epsilon '' variations with depth indicate that ash residues can seep up to depths of 10 cm in a single burning process. Moreover, the continuous burning of stubble can have permanent effects on soil's properties. Among considered regression models, the Deep NN-based regression model has given the most accurate predictions of the regressor variables $\varepsilon {{\prime}} $epsilon ' and $\varepsilon {{\prime \prime}}$epsilon '', with a root-mean-square-error (RMSE) of 0.06 and 0.07, respectively. Stubble burning has visible effects on physical, chemical as well as dielectric properties of soil. The burning of stubble damages natural ecosystem and essential nutrients which decrease fertility of soil. Also, the resultant residue ash becomes permanent part of soil profile and alters basic properties of soil. Moreover, exploration of ML-based regression models suggests the tremendous applications of data-centric models in soil and material sciences.

期刊论文 2024-08-17 DOI: 10.1080/15320383.2023.2249993 ISSN: 1532-0383

Microbes in peatlands provide key ecosystem services and are essential for their role in biogeochemical cycling. Prescribed burning is a common aspect of peatland management but the practice has been criticized for being ecologically damaging due to its effect on the biological, chemical and physical properties of the soil. It is poorly understood how burning affects soil N cycling and previous studies have focused predominantly on the topsoil whilst giving less attention to changes with soil depth. This study investigated the changes of microbial abundance (bacterial 16S rRNA and fungal 18S rRNA) and the abundance of N-cycle functional genes involved in archaeal and bacterial ammonia oxidation (amoA-AOA and amoA-AOB), denitrification (nirK and nirS), N fixation (nifH) and organic N decomposition (chiA) in soil profiles across three burn treatments on a managed peatland landscape (a 'non-burn' since 1954 control, 20 years burn interval, and 10 years burn interval). Our results indicate the abundance of bacterial 16S rRNA and fungal 18 s rRNA was affected by burn treatment, soil depth and their interaction and were greater in the non-burn control plots. The abundances of amoA-AOA, amoA-AOB, and nifH were significantly higher in the topsoil of the non-burn control plots while the abundance of nirK was higher in plots subject to short rotation and long rotation burn regimes but also decreased significantly with soil depth. The abundance of nirS was not affected by burn treatment or soil depth. ChiA abundance was affected by burn treatment, soil depth and their interaction. N-cycle functional gene abundance responded differently to environmental factors associated with prescribed burning and varied with soil depth. These findings suggest that the practice of burning affects microbial N turnover potential and provides an important insight into the soil Ncycling potential of peatlands under different burning regimes.

期刊论文 2024-08-01 DOI: 10.1016/j.apsoil.2024.105426 ISSN: 0929-1393
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共101条,11页