共检索到 11

Buried pipelines are essential for the safe and efficient transportation of energy products such as oil, gas, and various chemical fluids. However, these pipelines are highly vulnerable to ground movements caused by geohazards such as seismic faults, landslide, liquefaction-induced lateral spreading, and soil creep, which can result in potential pipeline failures such as leaks or explosions. Response prediction of buried pipelines under such movements is critical for ensuring structural integrity, mitigating environmental risks, and avoiding costly disruptions. As such, this study adopts a Physics-Informed Neural Networks (PINNs) approach, integrated with a transfer learning technique, to predict structural response (e.g., strain) of both unreinforced and reinforced steel pipes subjected to Permanent Ground Displacement (PGD). The PINN method offers a meshless, simulation-free alternative to traditional numerical methods such as Finite Element Method (FEM) and Finite Difference Method (FDM), while eliminating the need for training data, unlike conventional machine learning approaches. The analyses can provide useful information for in-service pipe integrity assessment and reinforcement, if needed. The accuracy of the predicted results is verified against Finite Element (FE) and Finite Difference (FD) methods, showcasing the capability of PINNs in accurately predicting displacement and strain fields in pipelines under geohazard-induced ground movement.

期刊论文 2025-10-01 DOI: 10.1016/j.compgeo.2025.107389 ISSN: 0266-352X

Impact from falling objects can easily cause the local deformation of pipeline, which threatens the safe and stable operation of pipeline. In order to study the dynamic response behavior of impacted buried pipelines in cold regions, the buried pipelines, frozen soil and falling objects are taken as the object. Considering the nonlinearity of pipeline material, the contact nonlinearity between pipeline, falling objects and frozen soil, a double nonlinear dynamic analysis model of buried pipeline in cold regions is established by explicit dynamic analysis method. The rationality of the model method is verified by comparing the curves in this paper with those from the experiment. Furthermore, the changing laws of dynamic response of pipeline influenced by different factors are discussed. The results show that: when the buried depth of pipeline is 2 m, the deformation and residual stress of pipeline increase with the increase of pipeline's diameter-tothickness ratio, the impact velocity of falling object and the water content of frozen soil, and the impact velocity of falling objects influences the dynamic response behavior of pipelines most significantly, followed by the diameter-thickness ratio of pipelines and the water content of frozen soil; When the diameter-thickness ratio of the pipeline is 58, the deformation and residual stress of pipeline decrease with the increase of buried depth by 75 % and 88 % respectively. Among the four influencing factors, when the impact velocity of falling objects is 10 m/s and the buried depth of pipeline is 3 m, the deformation amplitude of pipelines caused by falling objects is the smallest. It is suggested that in the high-risk regions of falling objects, the diameter-thickness ratio, buried depth and the water content of frozen soil can be reasonably controlled under the condition of predicting the maximum potential impact velocity of falling objects, so as to improve the ability of the pipeline to resist external impact damage, which provides theoretical basis and quantitative control standards for the impact design of pipeline engineering in cold regions.

期刊论文 2025-06-02 DOI: 10.21595/jve.2025.24679 ISSN: 1392-8716

Acoustic emission (AE) offers the potential to monitor and interpret soil-pipe interaction behavior by sensing particle-scale interactions. However, application of AE is limited by gaps in understanding related to how particle-scale interactions influence AE activity. Discrete element method (DEM) simulations of buried pipe uplift with energy tracking were performed and compared with experimental mechanical, displacement, and AE measurements, to ensure realistic behavior was captured by the modeling approach. A parametric investigation was then performed to evaluate the influence of pipe displacement direction and pipe diameter on plastic energy dissipation, and hence AE. Trends of dissipated plastic energy and measured AE with stress level (via burial depth) and pipe velocity were analogous. Relationships were quantified (R2 ranging from 0.74 to 0.98) between AE, dissipated plastic energy, and pipe velocity. Measured AE and dissipated plastic energy were linked with a general expression, comprising increments of friction (sliding and rolling), damping, and damage energies. Sliding friction energy accounted for >80% of the total dissipated energy on average during buried pipe deformation. Exemplar relationships were established between dissipated energy, pipe movement direction, embedment ratio, and mobilized soil volume (R2 values ranging from 0.92 to 0.97). A conceptual framework for interpreting buried pipe behavior using AE monitoring was presented.

期刊论文 2025-02-01 DOI: 10.1061/JGGEFK.GTENG-12913 ISSN: 1090-0241

Purpose: The study aims to investigate the behavior of buried steel pipelines in different layouts under the influence of various permanent ground movements that may occur as a result of earthquakes. In addition, different factors such as pipe diameter, pipe material properties, burial depth, and lateral earth pressure were varied to form 8 different analysis groups to determine their effects on the performance of pipelines. The results will contribute to the practical design and preliminary evaluation of the pipelines by the operating institutions. Theory and Methods: The effects of 10 different axial ground motion lengths, 9 different ground displacements, 8 different pipe layout models and 16 different variables (e.g. burial depth) were evaluated by finite element analyses. In order to observe the interdependent effects of the changes, analyzes were carried out by considering over ten thousand combinations. Results: The effects of the length of the PGD zone and the amount of displacement on pipeline behavior are assessed relative to boundaries (Fig. A) for different pipeline layouts. Moreover, the effects of the investigated variables on pipe stress and strain are explained one by one in the study. Conclusion: The effect of variables such as burial depth and pipe material properties on the analysis results varies depending on pipeline layouts and other parameters such as displaced ground block length and displacement amounts. Contributions of all these factors on pipeline performance are explained in detail to provide guidelines for the design and preliminary evaluation of the pipelines by institutions which operates the systems.

期刊论文 2025-01-01 DOI: 10.17341/gazimmfd.1292744 ISSN: 1300-1884

Damage to buried pipes under seismic landslide actions has been reported in many post-earthquake reconnaissance. The landslide-pipe problem in the technical literature has been often investigated using simplified analytical methods. However, the analytical methods ignore the real mechanism of pipe response under natural dynamic slope instability. The dynamic slope instability is significantly influenced by its lateral boundary interface (LBI) characteristics. In this study, slope-pipe interaction (SPI) under seismic loading, focusing on the effect of LBI properties, is evaluated by continuum numerical simulation using the SANISAND constitutive model in FLAC3D. The results show that the geometry of the failure mass varies from 2D to 3D by increasing the stiffness at the slope boundaries (from smooth to hard) and the maximum pipe deformation decreases by around 40%. Moreover, the response components of maximum axial stress, bending moment, and shear stress of the pipe occur at the end sections of the buried pipe and near the boundaries of the landslide zone. However, the maximum pipe deflection occurs in the middle of the pipe. The results of shear force-shear displacement curves demonstrate that the soil-pipe interaction stiffness is variable along the pipe length and can be estimated by a hyperbolic equation.

期刊论文 2024-11-01 DOI: 10.1080/15732479.2024.2363834 ISSN: 1573-2479

Buried pipelines subjected to permanent ground deformations (through, e.g., earthquake-induced liquefaction or fault rupture) often experience widespread damage. Regardless of the direction of ground movement, pipelines tend to respond and experience damage axially due to their directional stiffness characteristics. In addition, case studies and previous testing have shown that damage is concentrated at the pipe joints due to their lower strength compared with a pipe barrel. Previous testing has also shown that axial forces increase significantly when pipe connections have jointing mechanisms, such as coupling restraints, with larger diameters than the pipe barrel alone. These enlarged joints act as anchors along the pipe, increasing the soil resistance at these locations. Current methods for predicting the axial force along a pipe underpredict the force demands and oversimplify the mechanics of soil resistance on the joint face. This study conducts a series of 12 pipe-pull tests in a centrifuge, varying joint diameter and burial depth, to quantify the axial forces developed. A strong linear correlation was observed between the soil resistance on a joint face and the joint surface area and burial depth. The study also proposes an analytical solution based on pullout capacity design equations for vertical anchor plates as a function of soil and pipe joint properties. The proposed solution to calculate joint resistance is in good agreement with the centrifuge tests performed for this study and previous full- and model-scale experiments. The proposed prediction equation is anticipated to have future applications to other buried structures because it is based on mechanisms of passive resistance commonly encountered in underground structures and lifelines.

期刊论文 2024-09-01 DOI: 10.1061/JGGEFK.GTENG-12017 ISSN: 1090-0241

In order to evaluate the damage characteristics of buried natural gas pipelines with circular dent defects subjected to blast loading, based on pressure -impulse damage theory, explosion experiment and numerical simulations were implemented to evaluate the damage of a natural gas with circular dent defects buried in soil under blast loading in this research. The ALE method was used to develop a coupled pipeline-soil simulation model using LS-DYNA software, and the validity of the established model was verified correctly compared with experimental results and empirical theory equations calculations. Furthermore, according to regulations in the Assessment and Management of Pipeline Dents (American Petroleum Institute Recommended Practice 1183), the effect with different circular dent defect diameter on the mechanical properties of natural gas was also investigated and analysed. The results showed that, under the blast loading, plastic deformation happened on the surfaces of the pipeline facing the explosive, and the high-stress zone appeared in the circumferential direction with 32.27 degrees . The range of the high-stress zone firstly expanded along the axial direction of the pipelines and then along the circumferential direction. The larger diameter of the circular dent defects had, which resulted in a failure at the defects under the condition of the depth of the defects keeping constant. The effect of the size of defect diameter on the amount of pipeline deformation was further investigated, and the mathematical formula described the maximum plastic deformation with different defect diameter was established. Meanwhile, a finite element model of pipeline with a diameter of 457 mm was established for numerical analysis, which implied that the larger diameter of pipeline with the same defect had, the lower risk of pipeline in failure subjected to blast loading had. And through mathematical analysis and considering the feasibility of the actual situation, the curve described the maximum plastic deformation of the natural gas pipeline with three different defects varying in diameter were established respectively. In addition, a formula to express the relationship between pipeline defect diameter and maximum plastic deformation was established, which can effectively predict the critical plastic dent deformation of pipelines with different defect diameter subjected to blast loading. Besides, based on the pressure-pulse damage theory and with the damage assessment criterion of dent depth -dent length ratio of 0.072, the pressure -impulse diagrams of buried natural gas pipelines with defect diameters of 30 mm, 40 mm and 50 mm were defined, which can be used to predict the damage of pipelines with different defect diameters. Moreover, with the pressure -impulse damage evaluation curves, mathematical formula for the buried natural gas pipeline with the circular defects were established. Furthermore, the critical circular defect diameters with 30 mm was confirmed and the unique formula was also established, which could be effectively used to evaluate the safety of buried natural gas pipelines with the critical circular defects.

期刊论文 2024-09-01 DOI: 10.1016/j.engfailanal.2024.108581 ISSN: 1350-6307

When traversing through an active strike-slip fault, buried pipelines may be subjected to permanent ground deformation (PGD), causing large strains in the pipeline during an earthquake. The presence of bends near the fault-crossing zones may further increase the strain in the pipe. Moreover, it is well acknowledged that bends are the most vulnerable location to earthquake damage, mainly when compressive strain develops due to PGD. Hence, most design guidelines recommend constructing pipelines without field bends, elbows, and flanges crossing the fault zone. However, it is not always possible to provide only a straight segment of the pipeline, especially for blind faults where the location of the faults is unknown. Hence, the present study aims to investigate the response of buried continuous steel pipelines with field bends subjected to strike-slip faulting by conducting an extensive parametric study. A three-dimensional pipe-soil interaction model is developed in a finite element framework for this study. The pipeline response in terms of its maximum von-Mises stress and maximum longitudinal stress and strain due to fault crossing is studied for various influencing parameters such as pipe bend angle, soil strength, pipe burial depth, and distance of the fault trace from the bend. Based on the results obtained, suitable relationships in terms of modification factors over the response of a straight pipeline as a function of a few critical parameters are determined using regression analyses. It is concluded that providing bends to the pipeline can significantly affect its structural response when subjected to fault displacement when the fault trace is close to the pipe bend. The primary outcome of this investigation would be to suggest a simplified methodology to estimate the response of pipelines having field bends while crossing fault lines from the response of straight pipelines in a similar scenario.

期刊论文 2024-08-01 DOI: 10.1061/JPSEA2.PSENG-1480 ISSN: 1949-1190

Fault rupture propagation through near-surface soil deposits and the anticipated damage on adjacent structures have been thoroughly investigated focusing on single fault rupture. Nevertheless, large secondary faults have also been observed in field investigations. For this reason, the development of contemporaneous fault ruptures -and the resulting soil displacements-caused by complex combinations of oblique-slip main and non-parallel secondary faults is investigated herein. Moreover, the response of buried steel pipelines crossing such geohazardous areas is also examined aiming to assess pipeline vulnerability due to the presence of secondary faults. The investigation is conducted utilizing a decoupled numerical methodology, in which soil displacements are calculated utilizing a 3D numerical model, and subsequently, they are applied to a separate numerical model for the assessment of pipeline distress. Useful conclusions are drawn regarding the developed fault rupture patterns and the sequent pipeline distress under such detrimental conditions that may occur in seismotectonic regions.

期刊论文 2024-04-01 DOI: 10.1016/j.soildyn.2024.108554 ISSN: 0267-7261

Twin tunnel excavations can seriously affect the integrity of buried pipelines. In this investigation, centrifuge model tests and numerical simulations were carried out to study the brittle damage of buried pipelines induced by side-by-side twin tunneling. In the numerical model, the pipelines were simulated as peridynamics (PD) shell structures, the surrounding soil was represented as a series of independent Winkler springs, and the modified Gaussian curve was incorporated as displacement-controlled boundary conditions on the springs to simulate the sequential excavation of side-by-side twin tunneling. The effectiveness of the numerical method was assessed by comparing with the centrifuge model test results. Due to the interactions of two tunnels, the fracture characteristics were more complex for twin tunneling compared with the case of single tunneling. The fracturing point induced by the second tunneling could deviate from the second tunnel centerline. The first tunneling without inducing damage can suppress the damage initiation and propagation in the pipeline under the second tunneling. A pipeline with a smaller diameter and a higher critical energy release rate in sandy soils with a lower friction angle and a shallower burial depth has a higher capacity to resist damage under twin tunneling, showing a greater initial fracture angle.

期刊论文 2024-04-01 DOI: 10.1016/j.tust.2024.105647 ISSN: 0886-7798
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共11条,2页