共检索到 2

With the continuous impact of human activities on the ecological environment, buprofezin and cadmium are frequently detected in soil, sediment, and aquatic environments, posing ecological risks to non-target aquatic organisms. However, limited research exists on the toxic effects and mechanisms of action of these pollutants on aquatic organisms. This study used Xenopus laevis tadpoles as model organisms to experiment with buprofezin and cadmium. Through biochemical parameters and multi omics analysis methods, the single and combined toxicity mechanisms were explored. The experiment used environmentally relevant exposure levels to monitor the growth indicators, movement parameters, oxidative stress biomarkers of tadpoles, and conducted metabolomics and transcriptomics analysis. The results indicate that cadmium inhibits the growth of tadpoles, leading to a decrease in weight, and mixed exposure has a similar effect. Under dark conditions, buprofezin and cadmium significantly alter the swimming behavior of tadpoles, decreasing distance and average speed. Moreover, tadpoles exposed to buprofezin and cadmium experienced oxidative stress, which was reflected in increased levels of malondialdehyde and decreased activities of superoxide dismutase and glutathione S-transferase. Metabolomics and transcriptomics results showed that the combined exposure group produced more differentially accumulated metabolites and differentially expressed genes than the single exposure group. These genes and substances mainly affect the energy metabolism and signal transduction processes of tadpoles. In summary, buprofezin and cadmium interfere with gene expression and alter metabolite levels in tadpoles. This study reveals the combined toxicity of buprofezin and cadmium at environmentally relevant exposure levels. The research results provide toxicological evidence for the risk assessment of environmental pollutants and offer new insights into the effects of complex mixtures.

期刊论文 2025-08-01 DOI: 10.1016/j.envres.2025.121735 ISSN: 0013-9351

Buprofezin (BUP) is an effective insecticide against Homopteran and Thysanoptera pests. However, exposure to BUP may result in several harmful effects on the non-target organism including human body, such as hepatotoxicity and DNA damage. Therefore, development of a reliable analytical method for BUP holds paramount importance. This study presents a novel albumin-based supramolecular biosensor, DPP@ALB, designed for the sensitive detection of BUP in environmental matrices, including water, soil, and real food samples. The features of this biosensor include a fast response, high sensitivity, and visually detectable fluorescence color change, enabling on-site detection of BUP based on the portable paper strips and 3D-printed miniaturized testing system. Overcoming challenges associated with the low chemical reactivity of BUP, this supramolecular biosensor emerges as the very first fluorescent sensor for efficient and reliable monitoring of BUP with applications in broader areas of environmental analysis and food safety.

期刊论文 2024-08-15 DOI: 10.1016/j.snb.2024.135823
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页