Here, a seismic-response analysis model was proposed for evaluating the nonlinear seismic response of a pile-supported bridge pier under frozen and thawed soil conditions. The effect of a seasonally frozen soil layer on the seismic vulnerability of a pile-supported bridge pier was evaluated based on reliability theory. Although the frozen soil layer inhibited the seismic response of the ground surface to a certain extent, it exacerbated the acceleration response at the bridge pier top owing to the low radiation damping effect of the frozen soil layer. Furthermore, the frozen soil layer reduced the lateral displacement of the bridge pier top relative to the ground surface by approximately 80%, thereby preventing damage caused by earthquakes, such as falling girders. Compared to the thawed state of the ground surface, the bending moment of the bridge pier in frozen ground increases. However, the bending moment of the pile foundation in frozen ground decreases, thereby lessening the seismic vulnerability of the bridge pile foundation. The results of this can provide a reference for the seismic response analysis and seismic risk assessment of pile-supported bridges in seasonally frozen regions.
Vessel collisions on bridge piers have become a potential threat to the safety of bridges crossing navigation waterways. Such collision will cause inevitable damage on bridge piers and hence reduce the performance of the whole structure. It is therefore critical to identify the condition of abridge pier after a vessel collision event to judge whether it can still be used or certain rehabilitation is required to recover its normal operation. This paper develops an intelligent approach based on machine learning algorithms to identify the evolution process of damage on abridge pier during collision using sensor-measured acceleration time-history data considering the effects of multi-hazards. A barge vessel is employed and atypical reinforced concrete (RC) bridge pier is considered in this study. A coupled vessel-pier collision model (CVCM) considering soil-pile interactions and material non-linearity of RC components is developed and employed to generate pseudo-experimental data to assess the accuracy of the proposed damage identification strategy. The results demonstrate the potential of the proposed strategy for intelligent damage identification of waterway-crossing bridge piers after vessel collision.
This study explores the transverse response of bridge piers in riverbeds under a multi-hazard scenario, involving seismic actions and scoured foundations. The combined impact of scour on foundations' stability and on the dynamic stiffness of soil-foundation systems makes bridges more susceptible to earthquake damage. While previous research has extensively investigated this issue for bridges founded on piles, this work addresses the less explored but critical scenario of bridges on shallow foundations, typical of existing bridges. A comprehensive soil-foundation structure model is developed to be representative of the transverse response of multi-span and continuous girder bridges, and the effects of different scour scenarios and foundation embedment on the dynamic stiffness of the soil-foundation sub-systems are investigated through refined finite element models. Then, a parametric investigation is conducted to assess the effects of scour on the dynamic properties of the systems and, for some representative bridge prototypes, the seismic response at scoured and non-scoured conditions are compared considering real earthquakes. The research results demonstrate the significance of scour effects on the dynamic properties of the soil-foundation structure system and on the displacement demand of the bridge decks.
Bridge piers embedded in a riverain region are commonly supported by pile foundations. This provides a flexible restraint to the bridge pier instead of a theoretical rigid foundation type. In this work, a cylindrical bridge pier with a monopile foundation is introduced as an example. A modeling framework is proposed to investigate the dynamic response of bridge piers to the impact of flash flooding. The fluid-structure interaction is directly investigated via a two-way fluid-structure coupling approach and the p-y springs distributed over the interface between the soil and pile are adopted to model the lateral restraints from the soil. The effect of the soil-structure interaction (SSI) on the structural dynamic response is investigated on the basis of 3D numerical models with and without a pile foundation. Moreover, the soil around the pile foundation is vulnerable to erosion by flood flow. This continuous exposure of the pile foundation reduces the lateral load bearing capacity and consequently increases the dynamic responses of bridge structures to flash flooding. To demonstrate the effects of increased exposure of bridge pile foundations on structural dynamic responses, several different scour depths with scour ratios ranging from 0 to 0.5 are included in the numerical analysis. Two different considerations of the pile bottom are included in this study: completely fixed and only vertically fixed. The behavior of bridge piers subjected to flash flooding is thoroughly analyzed, and the damage mechanisms for these two foundation types are investigated. The relationships between peak responses and fundamental periods are determined via regression analysis.
Concrete bridge piers are critical components of bridge structures and their performance under seismic loading is of utmost importance. Traditional reinforced concrete bridge piers have shown limitations in terms of residual deformations and seismic resilience. This has led researchers to explore alternative reinforcement materials, such as Shape Memory Alloy (SMA) coupled with steel reinforcing bars, which have demonstrated promising attributes like energy dissipation as well as self-centering capacity. This study aims to fill this gap by evaluating the performance of concrete bridge piers with SMA-Steel coupled (SMASC) reinforcing bars under various intensities of vertical gravity loads and the action of pulse-like ground motion components, throughout a probabilistic framework. To this end, a group of bridge piers with different reinforcement types, including pure steel and SMASC are considered. These piers are subjected to 55 near-fault (NF) pulse-like records as well as 32 far-fault (FF) ground motions, throughout the Incremental Dynamic Analysis (IDA). The influence of distinct frequency components is analyzed by decomposing NF records into low-frequency pulses and high-frequency residual components. Also, the role of pulse to the 1st modal period of the piers (Tp/T1) is investigated by evaluating the piers' response under the action of NF records, which were clustered into four groups. Results were assessed by evaluating the intensity measure and capacity of the studied piers at the desired performance objectives according to the FHWA manual. Moreover, the mean annual frequencies of exceeding performance limit states and the confidence levels of meeting performance objectives are studied. The results of the study indicate that the dominance of the component of NF ground motions depends on factors such as the intensity of gravity loads, ground motion characteristics, and the Tp/T1 ratio. The components of NF records within certain clusters of the Tp/T1 ratio are necessary for accurate response assessment, while FF records can be used for conservative design purposes, depending on the level of ground motion intensity and the intensity of applied gravity load. The SMASC-reinforced piers with specific lambda factors (i.e. lambda = 0.5 or lambda = 1.0) and low intensity of gravity loads lead to a higher (1.6 times higher) mean annual frequency of exceeding a limit state, compared to pure steel rebars. Also, the confidence levels for meeting performance objectives vary depending on the ground motions, but, as gravity load intensity increases, confidence levels decrease, particularly for piers with a lambda factor of 0.5.