We have employed the Arecibo Observatory Planetary Radar (AO) transmitter and the Mini-RF radar onboard NASA's Lunar Reconnaissance Orbiter (LRO) as a receiver to collect bistatic data of the lunar surface. In this paper, we demonstrate the ability to form bistatic polarimetric imagery with spatial resolution on the order of 50m, and to create polarimetric maps that could potentially reveal the presence of ice in lunar permanently shadowed craters. We discuss the details of the signal processing techniques that are required to allow these products to be formed.