共检索到 4

Mitigating the co-existence of environmental stresses on crop plants necessitates the development of integrated, eco-friendly, and sustainable approaches to alleviate plant stress responses. This study represents the first attempt to mitigate the toxic impact of prevalent pollutant (salinity) and an emergent plastic manufacturing pollutants (bisphenol A, BPA) using the polyamine (cadaverine).Tomato plants, treated with or without cadaverine, were subjected to NaCl salinity (120 mM), BPA (375 mg kg(-1) soil), and their combinations compared to non-stressed control plants examining morphological, physiological, metabolic, and molecular responses. After 10 days of transplanting, tomato plants under combined stress were unable to survive without cadaverine application. However, cadaverine spraying mitigated the damaging effects of both single and combined stresses under short- and long-term exposure, enabling stressed plants to endure the conditions and complete their life cycles. Cadaverine efficiently restrained the reduction in chlorophylls, carotenoids, and cytosolutes under applied stresses compared to the stressed plants. Cadaverine also increased alpha-tocopherol content (by 171 and 53 %) and enhanced the activity of polyphenol oxidase (by 26 and 32 %), glutathione s-transferases (by 18 and 39 %), superoxide dismutase (by 23 and 46 %), and phenylalanine ammonia-lyase (by 9 and 25 %), under BPA and salinity stress, respectively. Thus, cadaverine ameliorated the oxidative and nitrosative burst induced by BPA or salinity, respectively by declining hydroxyl radical (by 28 % and 20 %), superoxide anion (by 73 % and 74 %), nitric oxide (by 60 and 65 %), lipid peroxidation (by 35 % and 54 %), and lipoxygenase activity (by 74 and 68 %). Moreover, cadaverine enhanced the expression of defence-related genes, including polyphenol oxidase, tubulin, and thaumatin-like protein, and reduced the uptake of BPA in the tomato's roots while promoting its metabolism in leaves and fruits. This ensured the safety of the harvested fruits. By mitigating stress, improving plant resilience, and limiting pollutant accumulation, cadaverine presents significant potential for sustainable agricultural practices and food safety. These findings offer valuable insights into the role of cadaverine in managing abiotic stress and safeguarding crop health in environmentally challenging conditions.

期刊论文 2025-07-01 DOI: 10.1016/j.plaphy.2025.109799 ISSN: 0981-9428

Sediment is the ultimate sink of environmental pollutants. A total of 128 surface sediment samples were collected from 8 rivers and 3 reservoirs in Maoming City, Guangdong Province. This study assessed the content and distribution of brominated flame retardants in sediments. The acute toxicity effects of tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCDs) in sediments were evaluated using Caenorhabditis elegans as model organisms. The concentration of TBBPA in sediments ranged from not detected (ND) to 12.59 pg/kg and was mainly distributed in the central area, which was affected by the emission of TBBPA from residential and factory. The concentration of HBCDs ranged from ND to 6.31 pg/kg, and the diastereoisomer distribution was consistent, showing a trend close to the South China Sea. The composition pattem of HBCDs in the surface sediments from rivers were 41.73%62.33%, 7.89%-25.54%, and 18.76%-40.65% for a-, /3-, and y-HBCD, respectively, and in the sediments from reservoirs were 26.15%-45.52%, 7.44%-19.23%, and 47.04%-61.89% for a-, /3-, and y-HBCD, respectively. When the sum of concentrations of TBBPA and HBCD in sediments were above high levels, reactive oxygen species in nematodes significantly increased, resulting in an oxidative stress response. Intestinal permeability was also enhanced, causing intestinal damage. In addition, in terms of this study, TBBPA had a greater impact on biotoxicity compared to HBCDs, and more attention should be paid to the toxic effects of the river ecosystem organisms in Maoming City, Guangdong Province. This study can complement the pollution database in the study area and provide basic data for pollution control. (c) 2024 The Research Center for Eco-Environmental Sciences, Chinese Academy of

期刊论文 2024-11-01 DOI: 10.1016/j.jes.2023.08.009 ISSN: 1001-0742

Bisphenol A (BPA) accumulates in the environment at lethal concentrations because of its high production rate and utilization. BPA, originating from industrial effluent, plastic production, and consumer products, poses serious risks to both the environment and human health. The widespread aggregation of BPA leads to endocrine disruption, reactive oxygen species -mediated DNA damage, epigenetic modifications and carcinogenicity, which can disturb the normal homeostasis of the body. The living being in a population is subjected to BPA exposure via air, water and food. Globally, urinary analysis reports have shown higher BPA concentrations in all age groups, with children being particularly susceptible due to its occurrence in items such as milk bottles. The conventional methods are costly with a low removal rate. Since there is no proper eco-friendly and cost-effective degradation of BPA reported so far. The phytoremediation, green -biotechnology based method which is a cost-effective and renewable resource can be used to sequestrate BPA. Phytoremediation is observed in numerous plant species with different mechanisms to remove harmful contaminants. Plants normally undergo several improvements in genetic and molecular levels to withstand stress and lower levels of toxicants. But such natural adaptation requires more time and also higher concentration of contaminants may disrupt the normal growth, survival and yield of the plants. Therefore, natural or synthetic amendments and genetic modifications can improve the xenobiotics removal rate by the plants. Also, constructed wetlands technique utilizes the plant's phytoremediation mechanisms to remove industrial effluents and medical residues. In this review, we have discussed the limitations and futuristic advancement strategies for degrading BPA using phytoremediation-associated mechanisms.

期刊论文 2024-04-30 DOI: 10.1016/j.wasman.2024.03.010 ISSN: 0956-053X

Bisphenol A (BPA) is one of the environmental endocrine disruptors, due to its chemical stability it exists in abundant concentrations in water and soil consequently accumulating in the food chain and causing many endocrine-related health problems. So far, studies on the effects of BPA on marine invertebrates have focused on acute toxicity, endocrine regulation, reproduction, and development. However, fewer studies have been conducted on marine benthos. The current study aimed to detect the accumulation of BPA and its impact on tissue structure, antioxidant capacity, and immune indexes in marine worm, Urechis unicinctus. U. unicinctus, as a common marine benthic animal, were exposed to different concentrations of BPA. Blood cells and intestinal tract were taken for tissue structure inspection, and supernatant of the coelomic fluid was collected for oxidative and antioxidant biomarkers. Results showed that the accumulation of BPA in muscles of U. unicinctus tended to increase with exposure time. BPA induced a rise in H2O2 and MDA content, and altered the activities of CAT, TSOD, GST, LSZ and ACP, weaken the immune system functions. Moreover, pathological observation showed that BPA caused severe histopathology in the respiratory intestine, stomach, and midgut. These results will be helpful to understand the response mechanism of U. unicinctus under BPA exposure and provide a reference for controlling the aquaculture conditions and marine water quality of U. unicinctus.

期刊论文 2024-02-01 DOI: 10.1016/j.ecoenv.2024.115993 ISSN: 0147-6513
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页