Thermochemical processing of biowaste generates renewable carbon-rich materials with potential agronomic uses, contributing to waste valorization. This study evaluates the application of hydrochar obtained from hydrothermal carbonization of food waste, those obtained by different post-treatments (washing, aging, and thermal treatment), as well as biochar obtained by pyrolysis as soil amendments. For this purpose, the effect of char addition (1-10 wt% d.b.) on a marginal agricultural soil on germination and growth of Solanum lycopersicum (tomato) plants was assessed. All the hydrochars exhibited a chemical composition suitable for agronomic use, characterized by high nutrient content, abundant organic matter, and low concentration of phytotoxic metals. In contrast, biochar exceeded the permissible limits for Cr, Cu, and Ni concentrations rendering it unsuitable for application to agronomic crops. The high temperature of thermal post-treatment and pyrolysis favored mineral and heavy metal concentration while washing significantly reduced nutrient content (N, S, P, K, Mg) along with the electrical conductivity. The addition of biochar or both washed and thermally post-treated hydrochar negatively affected tomato growth. Reduced chlorophyll content was associated with the decreased expression of genes encoding enzymes involved in antioxidant metabolism. This led to photosynthetic membrane damage, as evidenced by chlorophyll fluorescence-related parameters. Conversely, the addition of aged (<= 5 wt %) and fresh (1-10 wt%) hydrochars increased both germination and plant growth compared to unamended soil, indicating that hydrochar from food waste does not require additional post-treatments to be used as a soil amendment.
In this work, polylactide (PLA) was loaded with wood flour (WF) or hazelnut shells (HSs) (10% and 20% of fillers). The matrix and biocomposites were fully characterized from a mechanical and rheological point of view to test their processability and mechanical performance. Compost burial degradation test (30 days), with or without a prior photo-oxidation step, assessed their biodegradability after an outdoor application, and was monitored by weight loss (WL). The viscosity of the biocomposites was lower than that of the matrix and this unusual result can be attributed to a limited adhesion between the PLA and fillers. Both fillers increased the elastic modulus but decreased the tensile strength and elongation at break. As for the weathering, the degradation of PLA was mostly due to hydrolytic chain scission due to the presence of humidity. Resistance of PLA to UV irradiation improved in presence of both the two fillers. Their lignocellulosic nature was responsible for this behavior. Both fillers induced a high resistance and lower degradation in compost: WL percentages of virgin PLA was about 26%, biocomposites with 20% of WF or HS showed WL of about 10% and 14%, respectively. Photo-oxidation (36 h with condensation cycle) increased the compost degradation rate of both biocomposites and WL of PLA with 20% of WF or HS were about 15% and 21%, respectively, after 30 days.Highlights Poor adhesion between the matrix and fillers reduced the biocomposites viscosity. Fillers increased the elastic modulus but decreased the properties at break. Both fillers improved the resistance of PLA to UV irradiation. Biocomposites showed a lower susceptibility to compost degradation than PLA. Photo-oxidation increased the compost degradation rate of biocomposites. A biocomposites studying from the cradle to the grave. image