共检索到 6

This paper presents a constitutive model for biotreated sand, developed within the framework of thermodynamic theory, to describe its mechanical behavior under undrained shear conditions. The model incorporates a reinforcement index and a hardening index to account for bonding effects. Undrained triaxial shear tests are conducted to validate the constitutive model. The results demonstrate the model's capacity to accurately predict the undrained shear behavior of biotreated sand under various reinforcement levels and initial confining pressures. It effectively captures the evolution of deviatoric stress, pore pressure, and stress paths. Furthermore, the model accounts for energy dissipation and the degradation of inter-grain bonding during undrained shearing, providing a theoretical foundation for the engineering application of biotreated sand.

期刊论文 2025-09-01 DOI: 10.1016/j.compgeo.2025.107352 ISSN: 0266-352X

Recently, the biostimulation has received attention due to its sustained mineralization, environmental adaptability and lower cost. In the current study, a series of isotropic consolidated undrained triaxial shear (CU) tests were performed on biocemented soil treated through biostimulation approach to examine the effect of cementation levels on the undrained shear behaviors. The test results demonstrate that the biocementation generated by the biostimulation approach can improve the shear behaviors remarkably, with the observed changes in stress-strain relationship, pore water pressure, stress path, stiffness development, and strength parameters. The variations of the strength parameters, i.e., effective cohesion and effective critical state friction angle, with increasing cementation treatment cycles can be well fitted by an exponential function and a linear function, respectively, while the variation of the effective peak-state friction angle is relatively small. The increased shear strength, stiffness, effective cohesion, and strain softening phenomenon of biocemented soils are related to the densification, increased particle surface roughness, and raised interparticle bonding caused by biostimulation approach. The liquefaction index decreases with the increase in cementation treatment cycles, especially at lower initial mean effective stress (100 and 200 kPa), indicating that the biostimulation approach may be a viable method for anti-liquefaction of soil.

期刊论文 2025-06-01 DOI: 10.1007/s11440-024-02528-0 ISSN: 1861-1125

The objective of the current study is to explore the effect of biostimulation treatment methods on the mechanical properties and microstructure characteristics of biocemented soil. Biostimulated microbially induced carbonate precipitation (MICP) is an eco-friendly and economical soil reinforcement measure. It relies on the stimulation of the urease-producing bacteria (UPB) in situ for the MICP process. Different biostimulation treatment methods involve different oxygen availability, stimulation solution content and distribution, and number of biostimulation treatments. There may be differences in the effect of UPB stimulation and biocementation when different biostimulation treatment methods are used. In this study, four biostimulation treatment methods, i.e., unsaturated single biostimulation treatment (USBT), unsaturated multiple biostimulation treatments (UMBT), saturated single biostimulation treatment (SSBT) and saturated-unsaturated-combined single biostimulation treatment (CSBT), were used to stimulate native UPB in soil columns, and then, the same cementation treatment was applied to the soil columns. Subsequently, the mechanical behavior and microstructural properties of the biocemented soil were investigated. The results indicated that the saturated single biostimulation treatment was more conducive to stimulating native UPB to induce CaCO3 precipitation. Samples subjected to the saturated single biostimulation treatment exhibited higher CaCO3 precipitation content (CCP), dry density, unconfined compressive strength (UCS) and lower permeability within the same cementation treatment cycle (NC). However, UCS was not only determined by CCP, but was also regulated by CaCO3 spatial distribution and precipitation pattern. This study could help guide the selection of biostimulation treatment methods.

期刊论文 2025-05-01 DOI: 10.1007/s11440-025-02548-4 ISSN: 1861-1125

Benzo[a]pyrene (BaP) is a highly carcinogenic persistent organic pollutant, and biostimulation is an effective strategy to enhance its degradation. This study utilized Bacillus subtilis MSC4 as a BaP-degrading bacterium to investigate the effects of two different fermentation waste liquids as stimulants on BaP degradation. The mechanisms were analyzed and compared at both the cellular and molecular levels. The results showed that the stimulation percentages of yeast Yarrowia lipolytica extracellular metabolites (YEMs) and Lactobacillus plantarum fermentation waste solution (LPS) on the biodegradation of BaP reached 52.8% and 63.4%, respectively, compared to B treatment without biostimulant. Physiological analyses showed that both stimulants repaired cell morphology, more than doubled bacterial biomass, increased EPS secretion, enhanced bacterial activity, and significantly reduced oxidative stress by lowering ROS levels to 75-78% of those in the BaP-stressed group, allowing for repair of oxidative damage. Transcriptomic analysis indicated that both stimulants upregulated pathways related to central carbon metabolism, enhancing cell proliferation and energy supply. Additionally, YEMs promoted electron transport and BaP transmembrane transport and upregulated the synthesis of various monooxygenases, while LPS induced the upregulation of genes encoding quercetin dioxygenase and played a more active role in biofilm formation and enhancing BaP bioavailability. This study reveals the shared and distinct mechanisms by which YEMs and LPS enhance BaP biodegradation, providing theoretical guidance for the application of YEMs and LPS in the bioremediation of BaP-contaminated environments.

期刊论文 2025-03-15 DOI: 10.1016/j.envpol.2025.125788 ISSN: 0269-7491

Compost tea is widely recognized for its beneficial effects on crop growth and soil health. However, its efficacy varies depending on the composition of the feedstock and brewing conditions. This study investigates the chemical composition and agronomic impact of compost tea prepared from a commercial mixture of plant residues and animal manure. Standard chemical analyses, combined with solid-state 13C CPMAS NMR spectroscopy, were employed to characterize the organic chemistry of the feedstock. High-throughput sequencing of bacterial and eukaryotic rRNA gene markers was used to profile the microbiota. Compost tea was applied to three crops, Allium cepa, Beta vulgaris, and Lactuca sativa, grown in protected Mediterranean environments on volcanic soils. The 13C CPMAS NMR analysis revealed that the feedstock is predominantly composed of plant-derived tissues, including grass straw, nitrogen-fixing hay, and animal manure, with a significant presence of O-alkyl-C and di-O-alkyl-C regions typical of sugars and polysaccharides. Additionally, the chemical profile indicated the presence of an aliphatic fraction (alkyl-C), characteristic of lipids such as waxes and cutins. The compost tea microbiome was dominated by Pseudomonadota, with Pseudomonas, Massilia, and Sphingomonas being the most prevalent genera. Compost tea application resulted in significant yield increases, ranging from +21% for lettuce to +58% for onion and +110% for chard. Furthermore, compost tea application reduced slug damage and enhanced the shelf life of lettuce. These findings highlight the bio-stimulant potential of this standardized compost tea mixture across different vegetable crops.

期刊论文 2025-02-28 DOI: 10.3389/fpls.2025.1524884 ISSN: 1664-462X

One of the major problems related to climate change is the increase in land area affected by higher salt concentrations and desertification. Finding economically and environmentally friendly sustainable solutions that effectively mitigate salt stress damage to plants is of great importance. In our work, some natural products and microbial biocontrol agents were evaluated for their long-term effectiveness in reducing salt stress in lettuce (Lactuca sativa L. var. romana) plants. Fourteen different treatments applied to soil pots, with and without salt stress, were analyzed using biometric (leaf and root length and width), physiological (chlorophyll and proline content), and morphological (microscopic preparations) techniques and NGS to study the microbial communities in the soil of plants subjected to different treatments. Under our long-term experimental conditions (90 days), the results showed that salt stress negatively affected plant growth. The statistical analysis showed a high variability in the responses of the different biostimulant treatments. Notably, the biocontrol agents Papiliotrema terrestris (strain PT22AV), Bacillus amyloliquefaciens (strain B07), and Rahnella aquatilis (strain 36) can act as salt stress mitigators in L. sativa. These findings suggest that both microbial biocontrol agents and certain natural products hold promise for reducing the adverse effects of salt stress on plants.

期刊论文 2024-09-01 DOI: 10.3390/plants13172505 ISSN: 2223-7747
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-6条  共6条,1页