Fusarium wilt of banana (FWB) is the most limiting disease in this crop. The phytosanitary emergency caused by FWB since 2019 in Colombia has required the development of ecofriendly control methods. The aim of this study was to test the effectiveness of microbial-based biofungicides against FWB caused by Fusarium oxysporum f. sp. cubense race 1 (Foc R1) and correlate such effect with plant physiological parameters. Five Trichoderma (T1 to T4 and T9) and four Bacillus (T5 to T8)-based biofungicides were evaluated in pot experiments. In vitro, dual confrontation tests were also carried out to test whether the in vitro effects on Foc growth were consistent with the in vivo effects. While Trichoderma-based T3, T4, and T9, and Bacillus-based T8, significantly reduced the growth of Foc R1 in vitro, Trichoderma-based T1, T3, T4, and T9 temporarily reduced the Foc population in the soil. However, the incidence progress of FWB was significantly reduced by Bacterial-based T7 (74% efficacy) and Trichoderma-based T2 (50% efficacy). The molecular analysis showed that T7 prevented the inner tissue colonization by Foc R1 in 80% of inoculated plants. The T2, T4, T7, and T9 treatments mitigated the negative effects caused by Foc R1 on plant physiology and growth. Our data allowed us to identify three promising treatments to control FWB, reducing the progress of the disease, delaying the colonization of inner tissue, and mitigating physiological damages. Further studies should be addressed to determine the modes of action of the biocontrol agents against Foc and validate the utilization in the field.
Currently, extreme weather events caused by climate change, such as heat waves, drought, frost, and heavy precipitation, have become a threat to agriculture by detrimentally affecting plant productivity and quality. The overuse of synthetic fertilizers is another major concern damaging the soil quality and water and air quality. In this regard, biostimulants could be a promising and potent solution to address these environmental concerns and meet the need for developing sustainable and green modern agriculture. Biostimulants that are primarily composed of natural substances and/or microorganisms can be broadly divided into non-microbial and microbial categories. In this review, the applications of the main types of biostimulants to plant growth and development are discussed, and the possible associated mechanisms of action are described as well. Furthermore, the current status and challenges relating to commercialization and large-scale implementation under changing climate conditions are covered. Overall, this review article could offer insights and knowledge of biostimulants' uses in agriculture for both academia and industrial sectors.