As a renewable energy source, biomass has the potential to replace non-renewable, fossil fuels. However, the disposal of the waste biomass ash (generated during energy generation) needs to be studied. While prior studies attempted to utilise composite additives containing biomass ash for soil, the introduction of other additives, such as cement, was an environmental burden. By employing biomass ash composition as the sole additive for strengthening purple soil under various curing conditions using high-temperature treatment, this study maximised its utilisation. The results showed that the unconfined compressive strength (UCS) varied across different curing conditions as the biomass ash content increased. After high temperature treatment at 800 degrees C, the biomass ash consistently reinforced purple soil under all the curing conditions. However, the biomass ash stabilisation mechanism differed between dry and humid curing conditions. Under dry curing conditions, the UCS increase depended on the cementing effect of soluble salt and/or insoluble calcite; under humid curing conditions, the UCS change was attributed to the damage to clay minerals, contact mode, and cementing effects of multiple components. Therefore, the 800 degrees C temperature-treated biomass ash can be used alone to reinforce purple soil, inhibiting the soil-water loss. This study presents a novel avenue for utilising waste, biomass ash, with considerable implications for environmental protection and soil stabilisation.
In cold regions, freeze-thaw cycles (FTCs) can alter the properties of soil used as a foundation filler, leading to failures in foundation engineering. The increase in biomass power plants has resulted in a significant amount of waste biomass ash, causing negative environmental impacts. To address these issues, waste wheat straw biomass ash (WSBA) is harnessed to enhance the properties of silty clays. This study examines how WSBA affects the mechanical properties and microstructure of silty clay after FTCs through FTCs tests, Triaxial tests, and Scanning Electron Microscopy (SEM) tests. The findings reveal that incorporating WSBA significantly enhances the mechanical properties and microstructure of the soil by filling internal pores and strengthening its structure. The mechanical properties of all soil samples exhibit significant deterioration after 1 FTC, with gradual stabilization ensuing after 6 FTCs. Notably, WSBA-modified samples show better resistance to freeze-thaw weathering compared to unmodified samples, particularly at a WSBA content of 10%. Furthermore, the study establishes empirical formulas linking mechanical parameters, freeze-thaw cycles, and WSBA content using binary quadratic equations. The investigation results could serve as a valuable reference for projects involving roadway subgrade backfill materials in regions with seasonal frozen soil.