Biodegradable mulch film is considered a promising alternative to traditional plastic mulch film. However, biodegradable mulch film-derived microplastics (BMPs) in the environment have been reported as carriers for herbicides. Particularly in agricultural settings, limited attention has been given to the abiotic and biological aging processes of BMPs, as well as the herbicides adsorption mechanisms and associated health risks of BMPs. This study investigated the adsorption behaviors and mechanisms of mesotrione on both virgin and aged polylactic acid (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) BMPs, and further evaluated their bioaccessibilities in gastrointestinal fluids. A variety of physical and chemical methods, including scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), revealed increased roughness, generation of oxygen-containing functional groups, and higher O/C ratios of PLA/ PBAT BMPs after ultraviolet (UV) and microbial aging processes. Both UV aging and microbial aging significantly enhanced the adsorption levels of mesotrione on PLA and PBAT BMPs by approximately two-fold, driven by pore filling, hydrogen bonding, and it-it conjugation. The adsorption capacity of mesotrione on BMPs decreased with the pH from 3.0 to 11.0, which was involved by electrostatic interactions. In addition, salt ionic strength (Na+, Ca2+, Mg2+, Fe3+) generally inhibited the adsorption due to ions competition for adsorption sites. Notably, mesotrione exhibited high bioaccessibility when adsorbed onto BMPs, with aged BMPs exhibiting greater desorption quantities in gastrointestinal fluids compared to virgin BMPs. These findings provide effective insights into the potential health threats posed by BMPs carrying herbicides in the environment and offer applicable guidance for managing and remediating composite pollution involving BMPs and adsorbed contaminants.
The generation of polyethylene mulch film (PEMF) has promoted the rapid development of agriculture, while the non-degradability of it has caused the serious damage for the ecological environment. Currently, the biodegradable mulch film is considered as the most promising green substitutes for petroleum-based PEMF, owing to its environmental friendliness and biodegradability. Hence, this study fabricated a biodegradable mulch film (PSGA) through the crosslink (the esterification/amidation reactions and hydrogen bonds) between polylactic acid waste liquid (PLAWL) and sodium alginate (SA)/gum arabic (GA). Then attapulgite (ATP) was added to improve the mechanical properties. Therein, PLAWL was a kind of waste liquid from the fabrication process of polylactic acid (PLA) based on straw. At the same time, PSGA had similar insulation and water retention performance to PEMF and great UV resistance, thermal stability, and hydrophilicity surface. Additionally, pot experiment showed that PSGA could significantly promote the growth of Chinese white cabbage and the degradability ratio of that could reach 50% in a month. The total amounts of Rhizobiaceae (Ensifer and Allorhizobium-Neorhizobium-Pararhizobium, fixing free nitrogen gas and providing nitrogen nutrients for plants) in soil with PSGA was 12%, which was obviously higher than that in blank (4.5%). Therefore, this study provides a high-value recycling route for industrial waste liquid, offering an alternative solution to PEMF.
Microplastic pollution from the agriculture industry presents a growing environmental and public health concern, driven in part by the widespread use of poly(ethylene) (PE)-based mulch. While plastic mulch is essential for sustaining an increasing global population, its contribution to microplastic pollution necessitates alternative solutions. This work addresses the urgent need for biodegradable mulches (BDMs) that match the performance of traditional PE films. A comprehensive methodology is proposed for the development and characterization of novel BDM formulations, informed by scientific literature, regulatory guidelines, commercial practices, and industry standards. The proposed approach emphasizes scalable formulation and processing of biodegradable polymer feedstocks, avoiding toxic solvents through thermal blending. For laboratory-scale production, hot melt pressing and blow film molding techniques are highlighted for their ability to produce uniform and reproducible films. Uniaxial mechanical testing of dog bone-shaped samples is recommended for rapid performance screening against industry benchmarks while film stability, water absorption, and biodegradation are evaluated under simulated agricultural conditions. Analytical techniques such as thermogravimetric analysis and differential scanning calorimetry are employed to characterize key properties, ensuring that the developed BDMs align with practical and environmental demands.
Microplastic contamination of low-density polyethylene mulch and nutrient loss from fertilizers present significant challenges in the crop-growing. In this study, the focus was on creating a biodegradable film that combines the advantages of plastic film, thermal insulation and water retention, as well as the controlled release of fertilizer. A key innovation was the efficient introduction of low molecular weight and low dispersibility of poplar lignin into chitosan and polyvinyl alcohol matrices. The lignin was extracted using deep eutectic solvents of binary carboxylic acids (choline chloride and maleic acid). The refined lignin was used as a superhydrophobic additive to improve the mechanical properties, hydrophobicity, and controlled nutrient release properties of the films through cross-linking. The mulch attained a tensile strength of 37.6 MPa, an elongation of 644.1 %, and a precise release of 53.1 % urea over 30 d at the ideal lignin content ratio (10 %). Furthermore, the film proficiently regulated soil temperature and moisture content. Successful enhancement of cabbage growth was achieved by actual measurements. This discovery provides innovative ideas for the development of nutrient slow- release high-strength integrated agricultural mulching films to promote sustainable, high-quality green agriculture.
Carbendazim (CBZ) is a highly effective benzimidazole fungicide; however, its excessive use poses significant risks to the environment and nontarget organisms. To mitigate this issue, in this study, we developed environmentally friendly antifungal mulch films that exhibited controlled CBZ release. The films were prepared using a tape-casting technique, incorporating 21.32 % CBZ-loaded halloysite nanotubes, ultramicrocrushed sorghum straw powder, corn starch, polyvinyl alcohol, and glycerol. This unique combination not only enhanced the environmental compatibility of the films but also leveraged the synergistic properties of the components. The resulting mulch films had excellent mechanical properties (maximum tensile load of 28.9 N) and barrier performance (water vapor transmission rate of 253.22 g/(m2 & sdot;d)), fully complying with the Chinese standard for biodegradable agricultural mulch films (GB/T 35795-2017). Additionally, the films demonstrated remarkable antifungal efficacy and controlled-release behavior, following a first-order release model with a cumulative release rate of 81.43 % CBZ over 18 d. The novelty of this study lies in the integration of CBZ-loaded halloysite nanotubes with a biodegradable matrix to develop multifunctional mulch films that combine antifungal performance, environmental protection, and agricultural sustainability. The controlled release of CBZ reduces its loss and excess release in soil, addressing pollution concerns and minimizing environmental risks. Thus, this study provides insight into the design of advanced agricultural materials that align with global sustainable development goals.
Extensively used plastic mulch film causes tremendous environmental pollution. Developing biodegradable mulch film represents an emerging demand for future agriculture. Bone gelatin (BG) has emerged as promising candidates in the field of biodegradable agricultural mulch film due to its eco-friendly and biodegradable attributes, yet the terrible mechanical properties and hydrophobicity are great challenges. Here, aminodimethylsiloxane/POSS polymer/bone gelatin (PDMS-NH2/PAH/BG) mulch film was prepared by incorporated POSS-allyl glycidyl ether hydroxyethyl acrylate polymer (PAH polymer) and aminodimethylsiloxane (PDMSNH2) into the BG. The effect of PDMS-NH2 dosages on performances of PDMS-NH2/PAH/BG mulch film was explored. When the PDMS-NH2 dosage was 4 %, the mulch film had a water contact angle (WCA) of 128 +/- 1 degrees, tensile strength (TS) of 5.93 +/- 0.81 MPa, and elongation at break (EAB) of 361.38 +/- 25.04 %. After being buried in the soil for 60 days, the degradation rate of mulch film reached 78 %. Additionally, it also had favourable light transmission, water vapor barrier and moisture retention and insulation performance. Pot experiment showed that the wheat seeds germination rate covered mulch film was 98 % and it could promote the growth of seedlings. The results indicated that PDMS-NH2/PAH/BG mulch film could serve as a biodegradable mulch film to boost crop yields, inspiring advancements in green ecological agriculture.
In this paper, carboxymethyl cellulose (CMC) and hemicellulose derived from water hyacinth were used to prepare hemicellulose-based biodegradable mulch film by covalent cross-linking and ionic cross-linking in order to expand its application in agricultural production practice. The esterification reaction between hemicellulose, CMC and citric acid resulted in an increase in tensile strength and elongation at break of the membranes. When citric acid was not used as cross-linking agent and the pH was lowered, the sodium carboxylate group was protonated into carboxylic acid group, which provided abundant active sites for chemical cross-linking of hydroxyl group on hemicellulose and hydroxyl group on CMC. Furthermore Zn2+ could cross-link with carboxylic acid group through hydrogen bonding, and when the DS of carboxymethyl group was high, the cross-linking of Zn2+ with Zn2+ was higher, and the conversion into nano ZnO was lower, which was conducive to the uniform distribution and reduction of agglomeration phenomenon in the films. It is favorable for its uniform distribution in the film and reduces the agglomeration phenomenon. The mulch films made from water hyacinth has excellent mechanical properties, light transmittance, water absorption, soil moisture retention and heat preservation, and is biodegradable. This study will provide new ideas for water pollution control and farmland pollution for sustainable agricultural production.
Non-degradable plastic mulch films used in agriculture are polluting the environment by leaving residues and microplastics in the soil. They are also difficult to recycle due to contamination during their use. Biodegradable mulch films are needed as alternatives so that they can be used effectively during the growing season and later be ploughed to be degraded in soil. However, market-available so-called biodegradable mulch films are very slow to degrade in the natural environment and thus do not fit with crop rotation demands or annual cultivation. In this study, we have developed mulch films from cotton gin trash (CGT) and/or gin motes (GM) in combination with biodegradable polycaprolactone and demonstrated their effectiveness over 3 months in outdoor conditions. Both the stability and degradation behaviours of mulch film samples were observed when they were placed on top of the soil and buried in the soil, respectively. Pesticide residue analysis also was carried out on CGT powder to identify and quantify individual pesticides against a matrix of known pesticides. The mulch films prepared in this study showed comparable and stable mechanical properties compared to commercial biodegradable mulch film, though were much quicker to degrade when buried in the soil. No pesticides were detected in the CGT samples. The films produced were vapour-permeable and may be useful in practical agricultural settings by being able to maintain consistent soil moisture and allowing precipitation to penetrate gradually. The lab-scale productioncost for the film was 98.8 AUD/kg, which could be lowered by integrating a continuous film line in large-scale production.
Plastic has become indispensable in various industries, including agriculture, due to its affordability and versatility. Overutilizing plastic in agriculture produces microplastics, which pose significant environmental damage and cause several health implications. Hence, biodegradable mulch films were produced as an alternative to plastic by integrating atrazine (PXA) into the Poly (Vinyl Alcohol)/Xanthan gum polymer blend by solvent casting method. The PXA mulch films exhibited a compact structure and a slight reduction in crystallinity due to the crosslinking caused by the atrazine herbicide. The PXA mulch films excelled over the current biodegradable mulches, demonstrating a tensile strength of 42.73 +/- 0.51 MPa and an elongation at a break of 60.58 +/- 1.21 %. The addition of atrazine improved the ability of the PXA mulch films to block ultraviolet (UV) radiation, suppress the water vapour transmission rate (WVTR), and enhance the hydrophobic properties. The PXA mulch films, buried in soil for 15d, exhibited a degradation rate of 7.50 +/- 0.64 %, confirming their biodegradability. Herbicidal test was conducted with PXA mulch using Johnson grass as a weed. PXA mulch effectively retarded weed with enhancement of atrazine concentration. Kinetics investigations have verified that the release of the herbicide is governed by Fickian diffusion and exhibits a dependence on its concentration. For the impending harvest, soil fertility is also a crucial factor. PXA mulch films break down into organic matter to stimulate microbial development. Urease activity due to atrazine creates mulch soil rich in nitrogen content, and elevation in catalase activity ensures significant microbial development. These results of biodegradable PXA mulch films address the loss of soil fertility caused by applying PE mulching, which is the underlying cause of microplastic formation. These research findings suggest that PXA biodegradable mulch film could be an alternative to hazardous PE mulch in agriculture.
Plastic mulch is widely utilized for weed control, temperature regulation, soil erosion prevention, disease management, and soil structure improvement, ultimately enhancing crop quality and yield. However, a significant issue with conventional plastic mulches is their low recycling rates, which can cause plastic residue to build up, thereby damaging soil quality and reducing crop yield. The emergence of biodegradable films offers a promising solution to mitigate this issue and reduce soil pollution. However, its potential effects on soil properties and plant performance remain unclear. In this study, low-density polyethylene (LDPE) and poly (butylene succinate-co-butylene adipate) (PBSA) were used to observe the effect of plastic mulch residues on soil properties and plant growth performance via potting experiment. Additionally, the interaction effects of compost and biochar as soil amendments with plastic mulch residues were also evaluated. The result of this study revealed that the type of plastic significantly affected the total nitrogen and magnesium uptake; however, the morphological traits of the tested plant (Japanese mustard spinach) were not significantly affected. The addition of compost and biochar led to a significant increase in both shoot and total dry weight of the plant, indicating a positive effect on its growth. The results of the two-way ANOVA indicated a significant influence of plastic type on dissolved phosphate (PO43- ) levels and soil dehydrogenase activity (DHA). The interaction effect (plastic type with soil amendment) was statistically significant only for soil DHA. Neither plastic mulch residues nor soil amendments significantly affected other soil chemical properties. However, long-term experiments to systematically investigate the long-term effects of plastic residues are necessary.