Ginger is a significant ethnobotanical and pharmacological crop consisting of potential bioactive constituents responsible for their nutraceutical value, they can have anti-inflammatory, antiobesity, antidiabetic, antinausea, antimicrobial, pain alleviation, antitumor, antioxidant and protective effects on respiratory disease, and agerelated disease. Ginger possesses a substantial value, but its production and general quality are greatly harmed by various biotic and abiotic stressors, to which it is highly susceptible. Fungi are the most damaging disease-causing agents, one of the devastating fungal pathogens in ginger is Fusarium spp., a soil and seed-borne pathogen resulting in poor production, poor quality, and decreased economic returns to the farmers. It infects ginger in every stage of development and each plant part even during post-harvest storage. This review emphasizes a comprehensive understanding of the nutraceutical value of ginger compounds, and Fusarium disease in ginger with its pathogenicity. Moreover, this review elaborates on an improvement of ginger yield by the management of the Fusarium pathogen through the biological and biotechnological approach.
Background: The olive stone, a primary by-product of olive oil extraction, is mainly composed of a lignified shell and inner seed. It represents a substantial portion of the olive industry's biomass waste, contributing over 40 Mt annually. While typically regarded as waste, olive stones contain a variety of nutrients and bioactive compounds like lipids, proteins, phenolic compounds, and minerals found in the seed, as well as fibers in the shell. These elements hold significant value across multiple sectors, including food, energy, and agriculture. These phenolic compounds and nutrients provide notable antioxidant, anti-inflammatory, chemopreventive, and antimicrobial effects, supporting health and disease prevention. Scope and approach: This review explores the sustainable utilization of olive stone by-products, highlighting their potential to contribute to human health and environmental sustainability. It discusses the practical applications of olive stones in various domains, from functional ingredients in food products and pharmaceuticals to renewable energy sources and soil-enhancing agricultural inputs. Key findings and conclusions: Olive stones, particularly olive seeds, are rich in dietary fiber (47.6 %), lipids (30.4 %), proteins (13.5 %), and phenolic compounds (8.10 %), especially n & uuml;zhenide, n & uuml;zhenide 11-methyl oleoside and methoxyn & uuml;zhenide, and demonstrate a range of health-promoting properties. Additionally, they are shown to benefit metabolic health by combating disorders such as diabetes, hyperlipidemia, obesity, and car- diovascular and neurodegenerative diseases while also protecting organ functions like those of the liver and kidneys. The review underscores the promise of olive stone by-products as a sustainable, health-benefiting resource in circular economy practices within the olive oil industry.
Plant-parasitic nematodes (PPN) pose a significant threat to agricultural productivity by causing extensive damage to various crops worldwide. Their complex life cycle and ability to persist in soils make nematode management difficult. Chemical control strategies are emerging as effective but often result in environmental and ecological risks. Biocontrol agents offer a promising alternative with the desired level of reduction in nematode populations without harming non-target organisms. Among the nematode antagonists, Streptomyces spp. is an effective candidate with their ability to produce secondary metabolites that exhibit potent nematicidal properties. Streptomyces avermitilis is the one species that has been completely exploited for nematode and insect management. This review highlights the role of Streptomyces spp. other than S. avermitilis in phytonematode management. Few Streptomyces spp. such as S. yatensis, S. pactum, S. rochei, S. rubrogriseus, S. lincolnensis, S. hygroscopicus, S. antibioticus strain M7, S. albogriseolus ND41 and S. fimicarius D153 are reported to have nematode control potential. Arenimycin, carboxamycin, fervenulin, hygromycin, and lincomycin are some of the Streptomyces-derived compounds that proved to have nematicide potential. Streptomyces spp. also acts as an elicitor of plant defense against nematode intruders. They evinced endophytic potential, plant growth promotion mechanism, compatible nature with other antagonists, and safe to non-target organisms. This current review also highlights the direct and indirect mechanisms by which they control nematodes, another beneficial role in plants, and strategies to upgrade them as commercial products in future thrust areas.
Bracken fern (Pteridium aquilinum (L.) Kuhn) is ubiquitous and acts as a cosmopolitan weed in pastures and similar environments. Despite its historical uses, it presents risks due to toxicity. This study, conducted in the second half of 2023, aimed to assess the environmental and health hazards of P. aquilinum, primarily focusing on its carcinogenic compound, ptaquiloside. The literature was comprehensively reviewed using diverse databases, including PubMed, Web of Science, Scopus, and Google Scholar. Information was synthesized from original research articles, meta-analyses, systematic reviews, and relevant animal studies. Animals grazing on bracken fern face annual production losses due to toxin exposure. The substantial impact on biodiversity, animal health, and human well-being arises from the presence of ptaquiloside and related compounds in milk, meat, and water, along with the increasing global prevalence of P. aquilinum and its swift colonization in acidic soil and fire-damaged areas. The objectives were to identify major bioactive compounds and explore their effects at molecular, cellular, pathological, and population levels. Various cooking techniques were considered to mitigate toxin exposure, although complete elimination remains unattainable. Therefore, the findings emphasize the need for cautious consumption. In conclusion, continued research is necessary to better understand and manage its environmental and health implications.