共检索到 4

Biodegradable mulch film is considered a promising alternative to traditional plastic mulch film. However, biodegradable mulch film-derived microplastics (BMPs) in the environment have been reported as carriers for herbicides. Particularly in agricultural settings, limited attention has been given to the abiotic and biological aging processes of BMPs, as well as the herbicides adsorption mechanisms and associated health risks of BMPs. This study investigated the adsorption behaviors and mechanisms of mesotrione on both virgin and aged polylactic acid (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) BMPs, and further evaluated their bioaccessibilities in gastrointestinal fluids. A variety of physical and chemical methods, including scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), revealed increased roughness, generation of oxygen-containing functional groups, and higher O/C ratios of PLA/ PBAT BMPs after ultraviolet (UV) and microbial aging processes. Both UV aging and microbial aging significantly enhanced the adsorption levels of mesotrione on PLA and PBAT BMPs by approximately two-fold, driven by pore filling, hydrogen bonding, and it-it conjugation. The adsorption capacity of mesotrione on BMPs decreased with the pH from 3.0 to 11.0, which was involved by electrostatic interactions. In addition, salt ionic strength (Na+, Ca2+, Mg2+, Fe3+) generally inhibited the adsorption due to ions competition for adsorption sites. Notably, mesotrione exhibited high bioaccessibility when adsorbed onto BMPs, with aged BMPs exhibiting greater desorption quantities in gastrointestinal fluids compared to virgin BMPs. These findings provide effective insights into the potential health threats posed by BMPs carrying herbicides in the environment and offer applicable guidance for managing and remediating composite pollution involving BMPs and adsorbed contaminants.

期刊论文 2025-07-01 DOI: 10.1016/j.cej.2025.163821 ISSN: 1385-8947

Arsenic (As) in soil, such as mining waste, is a concern for communities with legacy contamination. While the chronic health effects of As exposure through drinking water are well documented, the association between As in soil and population-wide health impacts is complex, involving factors like soil accessibility, soil properties, and exposure modes. This review summarizes evidence of associations between As in soil and human health, as well as biomarker and bioaccessibility evidence of exposure pathways. Fourteen studies were included in the final analysis. Reviewed studies reported associations between As in soil and birth outcomes, neurological effects, DNA damage, and cancer. Some of these health outcomes are not known to be linked to As in drinking water and were reported over a range of soil concentrations, indicating inconsistencies. Higher soil As concentrations are associated with higher As in human biospecimens, suggesting direct and indirect soil ingestion as primary exposure pathways. The subpopulations more likely to be exposed include younger children and those involved in soil-based activities. Future research should focus on standardized epidemiological studies, longitudinal studies, soil exposure and mitigating factors, combined exposure biomarker studies, the behavior of the different As species, soil dose related to bioavailability/bioaccessibility, and effects with other elements.

期刊论文 2025-05-14 DOI: 10.3390/environments12050161

The human health risk assessment through the dermal exposure of metal (loid)s in dust from low latitude and high geological background plateau cities was largely unknown. In this study, the road dust samples were harvested from a typical low-latitude plateau provincial capital city Kunming, Southwest China. The total concentration and dermal bioaccessibility of heavy metal (loid)s in road dust were determined, and their health risks as well as cytotoxicity on human skin keratinocytes were also assessed. The average concentrations of As (28.5 mg/kg), Cd (2.65 mg/kg), Mn (671 mg/kg), and Zn (511 mg/kg) exceeded the soil background values. Arsenic had the highest bioaccessibility after 2 h (3.79%), 8 h (4.24%), and 24 h (16.6%) extraction. The dermal pathway when bioaccessibility is considered has a higher hazard quotient than the conventional method using total metal(loid)s in the dust. In addition, toxicological verification suggested that the dust extracts suppressed the cell viability, increased the reactive oxygen species (ROS) level and DNA damage, and eventually activated the mitochondria-mediated apoptosis pathway, evidenced by the upregulation of Caspase-3/9, Bax, and Bak-1. Cadmium was positively correlated with the mRNA expression of Bax . Taken together, our data indicated that both dermal bioaccessibility and cytotoxicity should be considered for accurate human skin health risk assessment of heavy metal(loid)s in road dust, which may provide new insight for accurate human health risk assessment and environmental management.

期刊论文 2024-07-01 DOI: 10.1016/j.envres.2024.118890 ISSN: 0013-9351

Ocular surface diseases are common in the plateau city, Kunming China, the continued daily exposure to heavy metals in dust may be an important inducement. In this study, the 150 road dust samples from five functional areas in Kunming were collected. The concentrations, distribution, possible sources, and bioaccessibility of heavy metals were analyzed. The adverse effects of dust extracts on human corneal epithelial cells and the underlying mechanisms were also assessed. The concentrations (mgkg(-1)) of As (19.1), Cd (2.67), Cr (90.5), Cu (123), Pb (78.4), and Zn (389) in road dust were higher than the soil background, with commercial and residential areas showing the highest pollution. Their bioaccessibility in artificial tears was As (6.59 %) > Cu (5.11 %) > Ni (1.47 %) > Cr (1.17 %) > Mn (0.84 %) > Cd (0.76 %) > Zn (0.50 %) > Pb (0.31 %). The two main sources of heavy metals included tire and mechanical abrasion (24.5 %) and traffic exhaust (21.6 %). All dust extracts induced cytotoxicity, evidenced by stronger inhibition of cell viability, higher production of ROS, and altered mRNA expression of antioxidant enzymes and cell cycle-related genes, with commercial- areas-2 (CA2)-dust extract showing the greatest oxidative damage and cell cycle arrest. Our data may provide new evidence that dust exposure in high geological background cities could trigger human cornea damage.

期刊论文 2024-02-20 DOI: 10.1016/j.scitotenv.2023.169140 ISSN: 0048-9697
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页