共检索到 5

Black carbon (BC) exerts a large impact on climate radiative forcing and public health, and such impacts depend strongly on chemical composition and mixing state. Here a single particle aerosol mass spectrometry (SPA-MS) along with an aerosol chemical speciation monitor was employed to characterize the composition and mixing state of BC-containing particles in summer and winter in Beijing. Approximately 2 million BC-containing particles were chemically analyzed, and the particles were classified into nine and eight different types in summer and winter, respectively, according to mass spectral signatures and composition. The BC-containing particles in summer were dominated by the type of nitrate-related BC (BC-N, 56.7%), while in winter the BC mixed with organic carbon (OC) and sulfate (BCOC-S), and OC and nitrate (BCOC-N) were two dominant types accounting for 44.9% and 16.6%, respectively. The number fractions of BC-N in summer, and BCOC-N and BC-SN in winter increased largely during periods with severe air pollution, suggesting the enhanced secondary formation on BC-containing particles. We also found that the primary emissions of the biomass burning and coal combustion can affect BC mixing state substaintially as indicated by the considerable fraction of BC mixed with levoglucosan and polycyclic aromatic hydrocarbons in winter. Bivariate polar plots and back trajectory analysis indicated that the sulfate-associated BC-containing particles were mostly from regional transport while the nitrate-related type was more from local production. The optical parameter of absorbing Angstrom exponents (AAE) of BC was 1.2 and 1.5 in summer and winter, respectively, and the AAE dependence of BC mixing state was also different in the two seasons. While higher fractions of BC-N were observed during lower AAE periods in summer, the variations of dominant OC-related BC-containing particles in winter were fairly stable as a function of AAE. (C) 2020 Elsevier Ltd. All rights reserved.

期刊论文 2020-08-01 DOI: 10.1016/j.envpol.2020.114455 ISSN: 0269-7491

The light absorption enhancement (E-abs) of black carbon (BC) caused by non-BC materials is an important source of uncertainty in radiative forcing estimate, yet remains poorly understood in relatively polluted environment such as the megacity Beijing. Here BC absorption enhancement at 630 nm was in-situ measured using a ther-modenuder coupled with a soot particle aerosol mass spectrometer and a single scattering albedo monitor in Beijing in summer. The project average (+/- 1 sigma) E-abs was 1.59 ( +/- 0.26), suggesting a significant amplification of BC absorption due to coating materials. E-abs presented a clear daytime increase due to enhanced photochemical processing, and a strong dependence on the mass ratios of non-BC coatings to BC (R-BC). Our results showed that the increase in E(abs )as a function of R-BC was mainly caused by the increased contributions of secondary aerosol. Further analysis showed that the BC absorption enhancement in summer in Beijing was mainly associated with secondary formation of nitrate, sulfate and highly oxidized secondary organic aerosol (SOA), while the formation of freshly and less oxidized SOA appeared not to play an important role.

期刊论文 2019-09-15 DOI: 10.1016/j.atmosenv.2019.06.041 ISSN: 1352-2310

The aerosol microphysical, optical and radiative properties of the whole column and upper planetary boundary layer (PBL) were investigated during 2013 to 2018 based on long-term sun-photometer observations at a surface site (similar to 106 m a.s.l.) and a mountainous site (similar to 1225 m a.s.l.) in Beijing. Raman-Mie lidar data combined with radiosonde data were used to explore the aerosol radiative effects to PBL during dust and haze episodes. The results showed size distribution exhibited mostly bimodal pattern for the whole column and the upper PBL throughout the year, except in July for the upper PBL, when a trimodal distribution occurred due to the coagulation and hygroscopic growth of fine particles. The seasonal mean values of aerosol optical depth at 440 nm for the upper PBL were 0.31 +/- 0.34, 0.30 +/- 0.37, 0.17 +/- 0.30 and 0.14 +/- 0.09 in spring, summer, autumn and winter, respectively. The single-scattering albedo at 440 nm of the upper PBL varied oppositely to that of the whole column, with the monthly mean value between 0.91 and 0.96, indicating weakly to slightly strong absorptive ability at visible spectrum. The monthly mean direct aerosol radiative forcing at the Earth's surface and the top of the atmosphere varied from -40 +/- 7 to -105 +/- 25 and from -18 +/- 4 to -49 +/- 17 W m(-2), respectively, and the maximum atmospheric heating was found in summer (similar to 66 +/- 12 W m(-2)). From a radiative point of view, during dust episode, the presence of mineral dust heated the lower atmosphere, thus promoting vertical turbulence, causing more air pollutants being transported to the upper air by the increasing PBLH. In contrast, during haze episode, a large quantity of absorbing aerosols (such as black carbon) had a cooling effect on the surface and a heating effect on the upper atmosphere, which favored the stabilization of PBL and occurrence of inversion layer, contributing to the depression of the PBLH. (C) 2019 Elsevier B.V. All rights reserved.

期刊论文 2019-07-15 DOI: 10.1016/j.scitotenv.2019.03.418 ISSN: 0048-9697

Using ground- based data, meteorological observations, and atmospheric environmental monitoring data, a comparative analysis of the microphysical and optical properties, and radiative forcing of aerosols was conducted between three stations in different developed environments during a severe air pollution episode during the Spring Festival over Beijing. During the most polluted period, the daily peak values of the aerosol optical depth were similar to 1.62, similar to 1.73, and similar to 0.74, which were about 2.6, 2.9, and 2.1 times higher than the background levels at the CAMS, Xianghe, and Shangdianzi sites, respectively. The daily peak values of the single scattering albedo were similar to 0.95, similar to 0.96, and similar to 0.87. The volume of fine- mode particles varied from 0.04 to 0.21 mu m(3) mu m(-2), 0.06 to 0.17 mu m(3) mu m(-2), and 0.01 to 0.10 mu m(3) mu m(-2), which were about 0.3 to 5.8, 1.1 to 4.7, and 1.2 to 8.9 times greater than the background values, respectively. The daily absorption aerosol optical depth was similar to 0.01 to similar to 0.13 at CAMS, similar to 0.03 to similar to 0.14 at Xianghe, and similar to 0.01 to similar to 0.09 at Shangdianzi, and the absorption Angstrom exponents reflected a significant increase in organic aerosols over CAMS and Xianghe and in black carbon over Shangdianzi. Aerosol radiative forcing at the bottom of the atmosphere varied from - 20 to - 130, - 40 to - 150, and - 10 to - 110 W m(-2) for the whole holiday period, indicating the cooling effect. The potential source contribution function and concentration-weighted trajectory analysis showed that Beijing, the southern parts of Hebei and Shanxi, and the central northern part of Shandong contributed greatly to the pollution.

期刊论文 2018-07-01 DOI: 10.4209/aaqr.2017.10.0396 ISSN: 1680-8584

Knowledge of the distribution and sources of black carbon (BC) is essential to understanding its impact on radiative forcing and the establishment of a control strategy. In this study, we analyze atmospheric BC and its relationships with fine particles (PM2.5) and trace gases (CO, NOy and SO2) measured in the summer of 2005 in two areas frequently influenced by plumes from Beijing and Shanghai, the two largest cities in China. The results revealed different BC source characteristics for the two megacities. The average concentration of BC was 2.37 (+/- 1.79) and 5.47 (+/- 4.00) mu g m(-3), accounting for 3.1% and 7.8% of the PM2.5 mass, in Beijing and Shanghai, respectively. The good correlation between BC, CO and NOy (R-2 = 0.54-0.77) and the poor correlation between BC and SO2 suggest that diesel vehicles and marine vessels are the dominant sources of BC in the two urban areas during summer. The BC/CO mass ratio in the air mass from Shanghai was found to be much higher than that in the air mass from Beijing (0.0101 versus 0.0037 Delta gBC/Delta gCO), which is attributable to a larger contribution from diesel burning (diesel-powered vehicles and marine vessels) in Shanghai. Based on the measured ratios of BC/CO and annual emissions of CO, we estimate that the annual emissions of BC in Beijing and Shanghai are 9.51 Gg and 18.72 Gg, respectively. The improved emission rates of BC will help reduce the uncertainty in the assessment of the impact of megacities on regional climate. (C) 2009 Elsevier Ltd. All rights reserved.

期刊论文 2009-08-01 DOI: 10.1016/j.atmosenv.2009.04.062 ISSN: 1352-2310
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页