Certain entomopathogenic fungi, such as Beauveria bassiana, are highly pathogenic to arthropod pests and are able to colonize plant tissues, thereby enhancing both plant growth and disease resistance. This study assessed three B. bassiana strains (CBM1, CBM2, and CBM3) for their pathogenicity toward insect larvae and colonization potential in wheat. The insecticidal activity of the fungi against the larvae of the major lepidopteran pests Helicoverpa armigera, Spodoptera frugiperda, Mythimna separata, and Plutella xylostella was determined. The fungi were then applied to wheat plants using seed immersion and soil drench methods; their colonization rates were compared, and the impacts of fungal colonization on wheat growth and survival were evaluated. The results demonstrated that all three strains were effective in reducing insect damage, with B. bassiana CBM1 exhibiting the highest pathogenicity followed by CBM3 and CBM2. B. bassiana CBM1 was particularly effective, with a significantly higher colonization rate achieved through soil drenching compared to seed immersion. The soil inoculation of B. bassiana resulted in increased plant height at 30 days after sowing (DAS) and root length at 15 DAS compared to the control group. B. bassiana CBM1-colonized wheat increased the mortality of fall armyworm. This research has enriched the biological control microbial resource pool and highlights the potential of B. bassiana in integrated pest management strategies.
Silverleaf whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), is a destructive insect pest damaging to diverse crops by vectoring several plant pathogenic viruses, which consequently causes economic losses in crop production. As the resistance of whiteflies to chemical insecticides is increasing, this study aimed to investigate the potential of entomopathogenic fungi as an alternative. A total of 72 entomopathogenic fungal isolates, collected from soils using Tenebrio molitor larvae as an insect baiting method, were assessed for their virulence against 2nd nymphs of whitefly. Their virulence was assayed by dipping whitefly-infested tomato leaves in fungal conidia suspensions at 1.0 x 107 conidia/mL. Among the tested isolates, two isolates of Beauveria bassiana JEF-462 and JEF-507 showed high virulence. In the assessment of virulence depending on conidia concentrations, the estimated LC50 values for JEF-462 and JEF-507 were similarly 8.7-14.0 x 107 conidia/mL. However, B. bassiana JEF-507 showed higher conidial productivity and thermotolerance on most of tested 12 grain substrates than B. bassiana JEF-462, and millet was the most suitable grain substrate. Additionally, siloxane as a surfactant was able to sufficiently exhibit the insecticidal activity of JEF-507 against whitefly nymphs compared with other surfactants. In a pot-based greenhouse trial, JEF-507 showed higher control efficacy than chemical insecticides, dinotefuran and spinetoram. This work suggests that B. bassiana JEF-507 could be competitively used as a biopesticide to control silverleaf whiteflies while overcoming current resistance issues. The JEF-507 isolate has been registered in Korea, 2022 and successfully commercialised as the name of Chongchae-Stop in this local market to control whitefly and thrips.
The current study aimed to isolate Beauveria brongniartii conidia from forest soils, identify the fungus, and evaluate its effectiveness on the eggs, larvae, pupae, and adults of Spodoptera litura. Insect mortality rates were recorded every 3, 6, 9, and 12 days. The identification of entomopathogenic fungi was carried out using molecular techniques, including PCR, DNA sequencing, and molecular markers, to detect species-specific 18 S rDNA genetic sequences, all performed under aseptic conditions. The results indicated that higher conidia concentrations (2.7 x 109 conidia/mL) exhibited greater virulence, with eggs showing a mortality rate of 98.66%, followed by larvae 96%, adults 90.66%, and pupae 77.33% after 12 days. Probit analysis revealed minimal LC50 and LC90 values: eggs (5.5 x 102; 1.0 x 106 spores/mL), larvae (8.2 x 102; 1.2 x 107 spores/mL), pupae (9.6 x 104; 7.3 x 1010 spores/mL), and adults (1.0 x 103; 2.0 x 108 spores/mL). The total hemocyte counts and detailed observational results revealed that B. brongniartii induces cellular breakdown and cell lysis in S. litura larvae by producing enzymes that degrade the cuticle and cell membranes. Earthworm bioindicator studies showed minimal effects from B. brongniartii conidia compared to controls, while chemical treatments resulted in 96% mortality at 100 ppm. Histopathological examinations revealed no significant differences in gut tissue between earthworms treated with fungal conidia and those in the control group, unlike the substantial damage caused by chemical treatments. Biochemical analysis revealed significant alterations in enzyme activity, including reduced levels of phosphatase and catalase, as well as increased levels of lipid peroxides and superoxide dismutase. This study highlights the effectiveness of B. brongniartii in controlling S. litura, demonstrating its potential as a viable biocontrol agent and promoting eco-friendly alternatives to chemical pesticides, with no risk to non-target species or the environment.
Endophytic and rhizosphere-competent entomopathogenic fungi (EF) are important plant bodyguards, although the mechanisms underlying this phenomenon are poorly understood. Therefore, we aimed to elucidate the roles of antibiosis (lethal and sublethal effects), and potential growth compensation (in response to leaf injury) in melon plants exposed to cotton leafworm. Plants were inoculated with one of three EF strains (EAMa 0158-Su Metarhizium brunneum strain or EABb 04/01-Tip and EABb 01/33-Su Beauveria bassiana strains) by either foliar spray, seed dressing or soil drenching and then challenged with either multiple short-term, or single long-term Spodoptera littoralis larval infestation. Endophytic colonization and relative expression of plant defense genes were tracked using molecular techniques alongside evaluation of antibiosis effects on S. littoralis and plant tolerance to larval-induced leaf injuries. Inoculated plants exhibited antibiosis and potential growth compensation in responses to various S. littoralis challenges, which resulted in increased fresh and dry weight, chlorophyll content, number of secondary branches and stem diameter. Furthermore, up-regulation in the relative expression of ethylene (ACO1, ACO3, EIN2, EIN3) and jasmonic acid (LOX2)-related genes were observed, with the endophytic B. bassiana- induction of ethylene and jasmonic acid production being higher in S. littoralis infested plants. Our findings strongly confirm the EF multifunctionality and the involvement of the Endophytic EF triggered melon defensive system induction in the antibiosis and compensatory growth to protect melon plants from pest damage.
W. Chan-Cupul, J. M. Palma-Garcia, E. Ruiz-S & aacute;nchez, and E. Cruz-Crespo. 2025. Assessment of the effects of inoculation with entomopathogenic fungi on the vegetative growth and yield of Capsicum chinense under water stress conditions. Int. J. Agric. and gastronomic value. The cultivation of C. chinense is increasingly challenged by global warming and droughts, which impact both plant health and market stability. Climate change affects agriculture by altering temperature and precipitation patterns, leading to soil moisture loss, drought, phenological damage, and increased pest and disease incidence. The use of bioinoculants, including entomopathogenic fungi (EFs), may be a strategy to mitigate drought in C. chinense production. The aim of this study was to assess the impact of Beauveria brongniartii and Purpureocillium lilacinum inoculation on the vegetative growth and yield of C. chinense var. Chichen Itza under two water stress conditions. Experiments were conducted in a gothic greenhouse, and C. chinense seedlings were transplanted into growth bags [coconut fiber (70%) and dust (30%)] with controlled irrigation at 75% and 100% levels. The EFs were applied weekly for the first month (50 mL at 1x107 conidia mL-1). Agronomic parameters, including plant height, stem diameter, chlorophyll index, leaf area, fruit quality, and yield, were measured. The results indicated that both B. brongniartii and P. lilacinum significantly increased plant height and stem diameter in the early stages of growth under water stress conditions. B. brongniartii notably increased plant growth and maintained fruit yield even under reduced irrigation. However, no significant differences were observed in the chlorophyll index or overall fruit yield among the treatments. The results of this study suggest that B. brongniartii and P. lilacinum can improve C. chinense resilience to water stress, suggesting potential applications in sustainable agriculture amidst climate change.
Insect pests are serious threats to agriculture, forestry, and human health because they damage crops and trees and spread diseases. Chemical insecticides control insect pests quickly and effectively, protecting crops. Environmental and health concerns arise from their use. Long-term exposure can cause pesticide-resistant insects, requiring stronger chemicals. Beneficial insects and wildlife may be harmed. Some chemical insecticides persist in the environment, causing long-term ecological damage. The present study was to isolate, identify, and characterize entomopathogenic fungi from the soil, evaluate their pathogenicity against major insect species, and evaluate the non-target effect on soil bioindicator species. Bioassay results show that Beauveria bassiana conidia are more pathogenic to all three species at 10 days after treatment, causing 100% mortality in Halyomorpha halys and Tenebrio molitor within 10 days. The lethal concentration showed lower LC50 values of 9.5 x 103 conidia/mL in H. halys, 2.6 x 103 conidia/mL in T. molitor, and 8.3x104 conidia/mL in P. japonica, B. bassiana treatment results showed a shortened insect life time LT50 of H. halys (6.0 days), T. molitor (5.3 days), and P. japonica (6.9 days). The present study concluded that B. bassiana fungi conidia are more efficient against three major insect pests.
Fall armyworm, Spodoptera frugiperda is an invasive polyphagous pest and has annually invaded Korea since it was first reported in 2019. This pest has already acquired resistance to synthetic chemical pesticides. To minimize the damage caused by S. frugiperda, alternative control methods with different mode of action should be developed. In this study, we assessed the virulence of native entomopathogenic fungi against S. frugiperda and investigated application methods to effectively control the target insect. We obtained 93 fungal isolates and assayed their pathogenicity against second instar larvae. Of the 93 isolates, 34 isolates caused high mortality. Based on their virulence, conidial productivity, and thermotolerance, ten isolates were selected for quantitative bioassays. In the bioassays using leaf dipping, all isolate treatments showed high virulence against second instar larvae, but only two isolates, Beauveria bassiana JEF-492 and Sf83 caused 93.3% and 86.7% mortality against fourth instar larvae, respectively. Given the soil-dwelling pupal stage, drenching the soil with Metarhizium anisopliae JEF-157 and B. bassiana JEF-492 from the selected isolates reduced the survival rate of pupae by up to 80% under laboratory conditions. The M. anisopliae JEF-157 and B. bassiana JEF-492 cultured on barley and rice showed high conidial productivity and thermotolerance. Our results show that soil application of M. anisopliae JEF-157 and B. bassiana JEF-492 targeting pupal stage could be effectively combined with the spray on the leaf-dwelling larval stage when the isolates encounter unfavorable abiotic stress on the leaves.