共检索到 105

In performance-based design, it is crucial to understand deformation characteristics of geocell layers in soil under footing loads. To explore this, a series of laboratory loading tests were carried out to investigate the influence of varying parameters on the strain levels within the geocell layer in a sandy soil under axial strip footing loading. The results were analyzed in terms of maximum strain levels, strain variation along the geocell layer and the correlation between horizontal and vertical strains. In this study, the maximum observed strain levels for geocellreinforced strip footing systems reached 2.3 % for horizontal (tensile) strain and 1.4 % for vertical (compressive) strain. Furthermore, most strain levels were concentrated within a distance of 1.5 times the footing width from the axis of strip footing. In geocell-reinforced footing systems, the interaction between horizontal and vertical strains becomes a key factor, with the ratio of horizontal to vertical cell wall strains ranging approximately from 1 to 2.5. The outcomes of this study are expected to contribute to the practical applications of geocell-reinforced footing systems.

期刊论文 2025-10-01 DOI: 10.1016/j.geotexmem.2025.05.002 ISSN: 0266-1144

Recent studies have highlighted the potential benefits of allowing inelastic foundation response during strong seismic shaking. This approach, known as rocking isolation, reduces the moment at the base of the column by transferring the plastic joint beneath the foundation and into the soil bed. This mechanism acts as a fuse, preventing damage to the superstructure. However, structures with a low static safety factor against vertical loads (FSv) may experience unacceptable settlements during earthquakes. To address this, shallow soil improvement is proposed to ensure sufficient safety and mitigate risks. In this study, a small-scale physical model of a foundation and structure (SDOF model, n = 40) was placed on dense sandy soil, and seismic loading was simulated using lateral displacement applied by an actuator. A group of short-yielding piles with varying bearing capacities (QU/NU = 0.1-0.8) was installed beneath the rocking foundation. The results of the small-scale tests demonstrate that the use of short-yielding piles during seismic loading reduces the settlement of the shallow foundation by up to 50% and increases rotational damping by 59%. This is achieved through the frictional yielding of the pile wall and the yielding of the pile tip, which dissipate energy and enhance the overall seismic performance of the foundation. The findings suggest that incorporating yielding pile groups in the design of rocking foundations can significantly improve their seismic performance by reducing settlement and increasing energy dissipation, making it a viable strategy for enhancing the resilience of structures in earthquake-prone areas. The optimal bearing capacity ratio (QU/NU = 0.25-0.5) provides a straightforward guideline for designing cost-effective seismic retrofits.

期刊论文 2025-08-01 DOI: 10.1007/s10706-025-03208-w ISSN: 0960-3182

Calculation and prediction of the uplift capacity of squeezed branch piles (SBP) are still immature. This study develops a method to predict the load-displacement relationship and ultimate capacity of SBP under pullup load by using a hyperbolic model to describe the nonlinear load transfer between pile-soil and plate-soil. The uplift bearing behaviors of SBP are analyzed through six sets of indoor model tests in homogeneous soils. The results, along with field tests of single-plate piles in layered soils and the indoor tests, confirm the high accuracy of the theoretical prediction method. The effects of three factors, including the pile side soil damage ratio (Rf), the horizontal earth pressure coefficient (k) and the damage angles of the soil under plate (psi), on the prediction results are analyzed. The results show that these factors significantly affect the second half of the loaddisplacement curve of SBP. Furthermore, as the Rf rises, the anticipated ultimate uplift capacity of SBP decreases linearly; as the k rises, it increases linearly; and as the psi rises, it increases nonlinearly.

期刊论文 2025-08-01 DOI: 10.1016/j.oceaneng.2025.121603 ISSN: 0029-8018

A series of large-scale (1:13) model tests of multi-stage loading and unidirectional multi-cycle loading were conducted on semi-rigid piles before and after cement-soil reinforcement in clay. The difference of ultimate bearing capacity between unreinforced and reinforced piles under different criterions is discussed, and their bending moment and displacement distribution rules are revealed. Meanwhile, the cyclic bearing behaviour of the unreinforced and reinforced piles are compared and analyzed, including cyclic load-displacement response, unloading stiffness, cumulative peak & residual displacement, peak & locked in moment. The test results show that the ultimate bearing capacity of the large diameter pile is increased by 34.4 % and the initial stiffness is increased by 56.8 % (reinforced width is 3D and depth is 1D) in the multistage loading test. Comparing the monotonic and cyclic load-displacement curves of unreinforced and reinforced piles obtained by multi-stage loading test and unidirectional multi-cycle loading test respectively, it is found that when the applied load is small, the curve obtained from multistage loading test is almost coincident with the first cycle envelope of all load levels in 1-way multi-cycle loading test, indicating that the cyclic effect is not significant. As the load increases, the difference between the curves becomes larger, indicating that the cyclic loading of higher amplitude causes greater soil disturbance. In addition, after applying cement-soil to the shallow soil around monopile, cement-soil reinforced pile exhibits a more rigid response, specifically manifested as an initial unloading stiffness of 1.76 times that of unreinforced pile, and a slower stiffness degradation rate. Meanwhile, the cyclic peak displacement & residual displacement accumulation of reinforced piles are smaller than that of the unreinforced pile, thereby reducing the development of the locked in moment.

期刊论文 2025-08-01 DOI: 10.1016/j.soildyn.2025.109421 ISSN: 0267-7261

The leakage of drainage pipes is the primary cause of underground cavity formation, and the cavity diameter-to-depth ratio significantly affects the overall stability of roads. However, studies on the quantitative calculation for road comprehensive bearing capacity considering the cavity diameter-to-depth ratio have not been extensively explored. This study employed physical model tests to examine the influence of the cavity diameter-to-depth ratio on road collapse and soil erosion characteristics. Based on limit analysis theorems, a mechanical model between the road comprehensive bearing capacity and the cavity diameter-to-depth ratio (FB-L model) was established, and damage parameters of the pavement and soil layers were introduced to modify the FB-L model. The effectiveness of the FB-L model was validated by the data derived from eight physical model tests, with an average deviation of 14.0%. The results indicate a nonlinear increase in both the maximum diameter and fracture thickness of the collapse pit as the cavity diameter-to-depth ratio increased. The pavement and soil layers adjusted the diameter and fracture thickness of the collapse pit to maintain their load-bearing capacity when the cavity diameter-to-depth ratio changed. The fluid erosion range increased continuously with increasing depth of buried soil and was influenced predominantly by gravity and seepage duration. Conversely, the cavity diameter decreased as the buried depth increased, which is associated with the rheological repose angle of the soil. Furthermore, the damage parameters of the pavement and soil layers decrease as the distance from the collapse pit diminishes, with the pavement exhibiting more severe damage than the soil layer. This study provides a theoretical basis for preventing road collapses.

期刊论文 2025-07-01 DOI: 10.1061/IJGNAI.GMENG-10675 ISSN: 1532-3641

Deep soil mixing (DSM) is a widely used ground improvement method to enhance the properties of soft soils by blending them with cementitious materials to reduce settlement and form a load-bearing column within the soil. However, using cement as a binding material significantly contributes to global warming and climatic change. Moreover, there is a need to understand the dynamic behavior of the DSM-stabilized soil under traffic loading conditions. In order to address both of the difficulties, a set of 1-g physical model tests have been conducted to examine the behavior of a single geopolymer-stabilized soil column (GPSC) as a DSM column in soft soil ground treatment under static and cyclic loading. Static loading model tests were performed on the end-bearing (l/h = 1) GPSC stabilized ground with Ar of 9 %, 16 %, 25 %, and 36 % and floating GPSC stabilized ground with l/h ratio of 0.35, 0.5, and 0.75 to understand the load settlement behavior of the model ground. Under cyclic loading, the effect of Ar in end-bearing conditions and cyclic loading amplitude with different CSR was performed. Earth pressure cells were used to measure the stress distribution in the GPSC and the surrounding soil in terms of stress concentration ratio, and pore pressure transducers were used to monitor the excess pore water pressure dissipated in the surrounding soil of the GPSC during static and cyclic loading. The experimental results show that the bearing improvement ratio was 2.28, 3.74, 7.67, and 9.24 for Ar of 9 %, 16 %, 25 %, and 36 %, respectively, and was 1.49, 1.82, and 2.82 for l/h ratios of 0.35, 0.5, and 0.75 respectively. Also, the settlement induced due to cyclic loading was high under the same static and cyclic stress for all the area replacement ratios. Furthermore, the impact of cyclic loading is reduced with an increase in the area replacement ratio. Excess pore water pressure generated from static and cyclic loads was effectively decreased by installing GPSC.

期刊论文 2025-07-01 DOI: 10.1016/j.soildyn.2025.109368 ISSN: 0267-7261

Considering the occurrence of an earthquake, the bearing capacity of a strip footing placed on a saturated cohesive-frictional soil mass has been computed by performing a pseudo-static rigorous analysis incorporating the existence of (i) excess pore water pressures, and (ii) additional seismic-tractions and body forces. The analysis has been carried out by using lower and upper bounds finite elements limit analysis (FELA) in conjunction with the second order cone programming (SOCP) using the Mohr-Coulomb (MC) yield criterion. The generation of the excess pore water pressure in the event of an earthquake has been incorporated by defining a pore pressure coefficient ru-a ratio of the excess pore water pressure to the total vertical overburden stress at any point. The analysis has revealed that the bearing capacity reduces considerably with an increase in the magnitude of horizontal earthquake acceleration. For a given magnitude of earthquake acceleration, the bearing capacity reduces extensively further with an increase in the value of ru. All the computational results have been presented in a non-dimensional manner, and for the validation purpose, necessary comparisons have also been made. The study will be useful for designing foundations in a seismically active zone.

期刊论文 2025-07-01 DOI: 10.1016/j.compgeo.2025.107226 ISSN: 0266-352X

To address the challenges of extraction difficulties and penetration risks associated with traditional spudcan jackup platforms, a new jack-up platform featuring a pile-leg mat foundation is proposed. The horizontal bearing capacity of hybrid foundations under the influence of dynamic loads is a critical factor that requires close attention. This research numerically examined the dynamic response of a hybrid foundation to horizontal cyclic loading on a sandy seabed. A user-defined subroutine was employed to incorporate the Cyclic Mobility (CM) model within Abaqus, facilitating the analysis of sand response under different densities. The horizontal cyclic bearing capacities of the foundation were investigated considering the effects of different loading conditions, sand density, and pile-leg penetration depth. Simulation results indicate that the cyclic loading amplitude, frequency, and load mode significantly influence the generation of soil excess pore water pressure (EPWP), subsequently affecting foundation displacement and unloading stiffness. Under cyclic loading, the loose sandy seabed shows the most pronounced fluctuations in EPWP and effective stress, leading to surface soil liquefaction. While surface soil in medium-dense and dense sand conditions remains non-liquefied, their effective stress still varies significantly. Increasing the pile-leg penetration depth enhances the foundation's horizontal bearing capacity while affecting its vertical bearing capacity slightly.

期刊论文 2025-07-01 DOI: 10.1016/j.soildyn.2025.109336 ISSN: 0267-7261

In view of the challenges posed by construction on deep soft coastal ground, this study introduces the precast drainage pile (PDP) technology. This innovative approach combines precast pipe piles with prefabricated vertical drains, installed through static pile pressing and subsequently subjected to vacuum negative pressure for the consolidation of surrounding soil. To evaluate the efficacy of PDP technology, a comparative analysis was conducted between precast pile and PDP, incorporating field testing and numerical simulation. The investigation focused on the evolution of excess pore water pressure, deformation, and pile bearing capacity. Results indicated that vacuum negative pressure drainage could induce rapid initial dissipation of pore water pressure, followed by a slower rate. Excess pore pressure decreased more rapidly and significantly closer to the drained pile, aligning with drainage consolidation theory. After 5 days of consolidation, the PDP exhibited a 16% increase in ultimate bearing capacity compared with the undrained pile. Numerical simulation outcomes closely matched field measurements. The enhancement in pile bearing capacity was found to correlate hyperbolically with drainage time, culminating in a 26.5% ultimate increase. The research achievements facilitate the development of new pile technologies in coastal soft soil areas.

期刊论文 2025-06-18 DOI: 10.1680/jgrim.24.00091 ISSN: 1755-0750

The stiffened deep cement mixing (SDCM) pile is a composite pile composed of the deep cement mixing (DCM) pile and an inner precast core pile. The excellent bearing performance of the SDCM pile that has been successfully witnessed in engineering practice is attributed to the double-layer load transfer mechanism, which effectively transfer the load from the stiffened core to the cemented soil and further to the adjacent soil. The mechanical properties of SDCM piles with stiffened cores that using large-size prestressed high-strength concrete (PHC) piles are rarely studied. This study aims to explore the bearing performance and failure behavior of the SDCM pile with a large-size PHC pile as stiffened core. The relationship between load and settlement as well as the distribution and development of axial force and lateral resistance was studied through field full-scale tests. The effects of the volume ratio, size, and concrete stiffness of the core pile, and the strength of cemented soil on the axial bearing capacity of SDCM piles were explored through the verified three-dimensional numerical model. The load transfer and failure modes at the internal and external interfaces of SDCM piles with different pile lengths were analyzed. Results show that the length of the core pile (Lcore) is a key factor for the bearing capacity of the SDCM pile. The bearing capacity of SDCM pile increases by 57.90% and 46.67% with Lcore increasing by 45% when cemented soil strength (qu, DCM) is 150 MPa and 300 MPa, respectively. The influence of qu, DCM and concrete stiffness on the bearing capacity of the SDCM pile is gradually significant with the increase of Lcore. The ultimate bearing capacity increases by 4.3% for every 100% increase in cemented soil strength at the optimal pile length. With the increase of Lcore, the investigated pile exhibits three failure modes, including the failure of pile end soil and cemented soil, the failure of pile top soil and core pile end soil, and the failure of pile top soil. The results of this study provide reference for the application of SDCM piles with large-size PHC piles as stiffened cores in the engineering field.

期刊论文 2025-06-01 DOI: 10.1007/s13369-024-09087-2 ISSN: 2193-567X
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共105条,11页