共检索到 30

In the northwestern saline soils and coastal areas, cement soil (CS) materials are inevitably subjected to various factors including salt erosion, dry-wet cycle (DWC), temperature fluctuations and dynamic loading during its service life, which the coupling effect of these unfavourable factors seriously threatened the durability and engineering reliability of CS materials. Additionally, combined with the substantially extensive application prospects of rubber cementitious material, as a resource-efficient civil engineering material and fibre-reinforced composites, consequently, in order to address aforementioned issues, this investigation proposed to consider the incorporation of rubber particles composite basalt fiber (BF) to CS materials as an innovative engineering solution to effectively enhance the mechanical and durability properties of CS materials for prolonging its service life. In this study, sulphate ions were utilized to simulate external erosive environment and basalt fibre rubber cement soil (BFRCS) specimens were subjected to various DWC numbers (0, 1, 4, 7, 11 and 15) in diverse concentrations (0 g/L, 6 g/L and 18 g/L) of Na2SO4 solution, and specimens that had completed the corresponding DWC number were then conducted both unconfined and dynamic compressive strength tests simultaneously to analyze static and dynamic stress-strain curves, static and dynamic compressive strength, apparent morphological deterioration characteristics and energy absorption properties of BFRCS specimens. Furthermore, further qualitative and quantitative damage assessments of pore distribution and microscopic morphology of BFRCS specimens under various DWC sulphate erosion environments were carried out from the fine and microscopic perspectives through pore structure test and scanning electron microscopy (SEM) test, respectively. The test results indicated that the static, dynamic compressive strength and specific energy absorption (SEA) of BFRCS specimens exhibited a slight increase followed by a progressive decline as DWC number increased. Additionally, compared to 4 mm BFRCS specimens, those with 0.106 mm rubber particle size demonstrated more favorable resistance to DWC sulphate erosion. The air content, bubble spacing coefficient and average bubble chord length of BFRCS specimens all progressively grew as DWC number increased, while the specific surface area of pores gradually decreased. The effective combination of BF with CS matrix significantly diminished pores and weak areas within specimen, and its synergistic interaction with rubber particles efficiently mitigated the stresses associated with expansive, contraction, crystallization and osmosis subjected by specimen. Simultaneously, more ettringite (AFt) had been observed within BFRCS specimens in 18 g/L sulphate erosive environments. These findings will facilitate the design and construction of CS subgrade engineering in northwestern saline soils and coastal regions, promoting sustainable and durable solutions while reducing the detrimental environmental impact of waste rubber.

期刊论文 2025-08-15 DOI: 10.1016/j.conbuildmat.2025.142083 ISSN: 0950-0618

In the last decade, several studies have reported enrichments of the heavy isotopes of moderately volatile elements in lunar mare basalts. However, the mechanisms controlling the isotope fractionation are still debated and may differ for elements with variable geochemical behaviour. Here, we present a new comprehensive dataset of mass-dependent copper isotope compositions (delta 65Cu) of 30 mare basalts sampled during the Apollo missions. The new delta 65Cu data range from +0.14 %o to +1.28 %o (with the exception of two samples at 0.01 %o and -1.42 %o), significantly heavier than chondrites and the bulk silicate Earth. A comparison with mass fractions of major and trace elements and thermodynamic constraints reveals that Cu isotopic variations within different mare basalt suites are mostly unrelated to fractional crystallisation of silicates or oxides and late-stage magmatic degassing. Instead, we propose that the delta 65Cu average of each suite is representative of the composition of its respective mantle source. The observed differences across geographically and temporally distinct mare basalt suites, suggest that this variation relates to large-scale processes that formed isotopically distinct mantle sources. Based on a Cu isotope fractionation model during metal melt saturation in crystal mush zones of the lunar magma ocean, we propose that distinct delta 65Cu compositions and Cu abundances of mare basalt mantle sources reflect local metal melt-silicate melt equilibration and trapping of metal in mantle cumulates during lunar magma ocean solidification. Differences in delta 65Cu and mass fractions and ratios of siderophile elements between low- and high-Ti mare basalt sources reflect the evolving compositions of both metal and silicate melt during the late cooling stages of the lunar magma ocean.

期刊论文 2025-08-01 DOI: 10.1016/j.gca.2025.06.006 ISSN: 0016-7037

Controlled low-strength material (CLSM) is a flowable, self-leveling backfill material used as an alternative to compacted soil for backfilling trenches, retaining walls, underground cavities, and in pavement construction. This study aims to investigate the permanent deformation of CLSM reinforced with basalt fibers. Basalt fibers with lengths of 6 and 24 mm are incorporated into CLSM mixtures to assess their impact on flowability, setting times, and mechanical properties. Mechanical testing indicates that longer fibers improve tensile strength through a bridging effect. Repeated load triaxial tests are conducted to evaluate the permanent strain behavior under repeated loading. The results show that permanent strain increases with the deviator stress and number of loading cycles. A regression model accounting for the number of loading cycles and deviator stress provides accurate permanent-strain predictions, and the permanent strain behaviors are classified based on the refined shakedown theory. Therefore, the basalt-fiber-reinforced CLSM suggested in this study may be suitable for pavement base material due to its relatively low permanent strain under typical stress conditions.

期刊论文 2025-05-01 DOI: 10.1016/j.trgeo.2025.101570 ISSN: 2214-3912

While traditional methods of soil stabilization using cement or lime have been extensively researched, there is a notable gap in understanding the mechanical behavior of soil stabilized with innovative materials. This study aims to investigate the mechanical properties of soil stabilized with polyurethane (PU) foam, nanosilica, and basalt fiber. Unconfined compressive strength (UCS) and direct shear tests were conducted on reconstituted silica and calcareous samples treated with various combinations of these additives. Various parameters, including additive content, curing time, and freeze-thaw cycles, were thoroughly examined. The findings demonstrate a significant increase in UCS and shear strength parameters (c and phi) with the addition of PU foam, nanosilica, or their combination with fiber. Notably, the combination of PU and basalt fiber exhibits the most promising performance in improving the mechanical behavior and freeze-thaw durability of silica and calcareous sand, especially for short curing times. Additionally, calcareous samples consistently exhibit higher UCS, and shear strength compared to silica samples. Furthermore, the analysis of failure patterns and the microstructure of the samples using scanning electron microscopy provides insights into the effectiveness of these stabilizing agents and their influence on the mechanical properties of the soil.

期刊论文 2025-04-01 DOI: 10.1007/s40098-024-00971-0 ISSN: 0971-9555

The use of basalt fibers, which are employed in various fields, such as construction, automotive, chemical, and petrochemical industries, the sports industry, and energy engineering, is also increasingly common in soil reinforcement studies, another application area of geotechnical engineering, alongside their use in concrete. With this growing application, scientific studies on soil reinforcement with basalt fiber have also gained momentum. This study establishes the effects of basalt fiber on the liquid limit, plastic limit, and strength properties of soils, and the relationships among the liquid limit, plastic limit, and unconfined compressive strength of the soil. For this purpose, 12 mm basalt fiber was used as a reinforcement material in kaolin clay at ratios of 1.0%, 1.5%, 2.0%, 2.5%, and 3.0%. The prepared samples were subjected to liquid limit, plastic limit, and unconfined compressive strength tests. As a result of the experimental studies, the fiber ratio that provided the best improvement in the soil properties was determined, and the relationships among the liquid limit, plastic limit, and unconfined compressive strength were established. The experimental results were then used as input data for an artificial intelligence model. The used neural network (NN) was trained to obtain basalt fiber-to-kaolin ratios based on the liquid limit, plastic limit, and unconfined compressive strength. This model enabled the prediction of the fiber ratio that provides the maximum improvement in the liquid limit, plastic limit, and compressive strength without the need for experiments. The NN results were in great agreement with the experimental results, demonstrating that the fiber ratio providing the maximum improvement in the soil properties can be identified using the NN model without requiring experimental studies. Moreover, the performance and reliability of the NN model were evaluated using 5-fold cross-validation and compared with other AI methods. The ANN model demonstrated superior predictive accuracy, achieving the highest correlation coefficient (R = 0.82), outperforming the other models in terms of both accuracy and reliability.

期刊论文 2025-02-01 DOI: 10.3390/pr13020377

Volcanic products returned from the Apollo missions over 50 years ago provide a unique perspective into the magmatic evolution of the Moon. However, questions remain regarding the volatile loss, crystallization, and emplacement histories of lunar lavas. To address gaps in our understanding of the eruptive histories of lunar lavas, we investigate phase chemistry and 3D morphologies of low-titanium Apollo 15 basalts belonging to the olivine-normative and quartz-normative suites. We report the 2D and 3D petrography, mineral chemistry, and 3D void space morphologies of 15499, 15555, 15556, and the lesser studied 15495 and 15608 basalts. Quantitative apatite chemistry shows a wide range of apatite volatile compositions and that low-Ti basalt 15495 may contain the most OH-rich compositions measured from the Moon. Analyses of metal grains within the low-Ti basalts have expanded the field of expected Ni and Co metal concentrations for Apollo 15 mare basalts and are used to determine the petrogenesis of two of the studied samples. Coupling 2D chemistry with nondestructive 3D morphologic analyses provides critical insights on the relative timing of volatile exsolution in low-titanium lavas. Through the analysis of vesicles and vugs from X-ray computed tomographic data, we report the first 3D void space volume percentages for a suite of low-Ti basalts and show that these basalts degassed before the onset of mesostasis (e.g., apatite) crystallization. We use calculated cooling rates and 3D morphologic analyses to show that the studied basalts crystallized at various depths in separate lava flows, and 15608 represents the quenched margin of a mare flow. Our work highlights the value of combining 2D and 3D analytical techniques to study the emplacement history of basalts that lack geological context.

期刊论文 2025-01-15 DOI: 10.1016/j.gca.2024.10.018 ISSN: 0016-7037

Freeze-thaw (F-T) cycling poses a significant challenge in seasonally frozen zones, notably affecting the mechanical properties of soil, which is a critical consideration in subgrade engineering. Consequently, a series of unconfined compressive strength tests were conducted to evaluate the influence of various factors, including fiber content, fiber length, curing time, and F-T cycles on the unconfined compression strength (UCS) of fiber-reinforced cemented silty sand. In parallel, acoustic emission (AE) testing was conducted to assess the AE characteristic parameters (e.g., cumulative ring count, cumulative energy, energy, amplitude, RA, and AF) of the same material under F-T cycles, elucidating the progression of F-T-induced damage. The findings indicated that UCS initially increased and then declined as fiber content increased, with the optimal fiber content identified at 0.2%. UCS increased with prolonged curing time, while increases in fiber length and F-T cycles led to a reduction in UCS, which then stabilized after 6 to 10 cycles. Stable F-T cycles resulted in a strength loss of approximately 30% in fiber-reinforced cemented silty sand. Furthermore, AE characteristic parameters strongly correlated with the stages of damage. F-T damage was segmented into three stages using cumulative ring count and cumulative energy. An increase in cumulative ring count to 0.02 x 104 times and cumulative energy to 0.03 x 104 mvmu s marked the emergence of critical failure points. A sudden shift in AE amplitude indicated a transition in the damage stage, with an amplitude of 67 dB after 6 F-T cycles serving as an early warning of impending failure.

期刊论文 2024-09-19 DOI: 10.1038/s41598-024-71882-6 ISSN: 2045-2322

This study employed fiber and geopolymer to enhance the engineering performance of coarse-grained fillers. By conducting a series of comparative mechanical tests, the ideal mass mixing ratio design of geopolymer and fiber was investigated first. Then, the influence of rock block content on the mechanical properties of coarse-grained fillers stabilized with fiber and geopolymer was explored. The deformation damage characteristics of fiber- and geopolymer-stabilized coarse-grained fillers with different rock block contents were also discussed in the final test. The results show that the ideal mass mixing ratio of geopolymer for coarse-grained filler stabilization was 15% of dry fine-grained soil in weight and the ideal dosage and length of fiber was 0.4% of dry fine-grained soil in weight and 1.2 x 10-2 m. The compressive strength of fiber- and geopolymer-stabilized coarse-grained fillers shows a tendency to increase first, then decrease, and then re-increase with the increase in rock block contents. The best compressive strength and resistance to deformation were achieved when the rock block content was 30%. The failure mode of fiber- and geopolymer-stabilized coarse-grained fillers translated from shearing slip to vertical splitting as the rock block content increased. This study can provide a reference and support for the engineering application of coarse-grained fillers stabilized with fiber and geopolymer.

期刊论文 2024-08-01 DOI: 10.3390/buildings14082404

The piles are structural elements in a foundation that transfer weight from the superstructure to the soil. The behaviour of pile foundations under lateral loading is critical. The pile needs to have enhanced tensile strength and ductility by adding supplementary material to withstand the lateral loads. There were many research studies done to improve these properties in concrete, and the addition of fibre to the concrete is one among them. Fibre-reinforced concrete is classified into numerous categories depending on the type of fibre used. This study is to use the combination of Basalt and E-glass fibre i.e., hybrid in the full-scale pile foundation under combined axial and lateral cyclic loadings. The experimental investigation was conducted on the full-scaled Conventional Concrete (CC) and Hybrid Fibre Reinforced Concrete (HFRC) piles to understand the behaviour under static and cyclic lateral loads. The lateral displacement on the piles was measured at each level of loadings using a Linear Variable Differential Transformer (LVDT). The load-displacement behaviour of CC and HFRC piles was compared under different loading conditions. The HFRC pile exhibits a 40% reduction in displacement and a 10% increase in ultimate carrying capacity compared to the CC pile. HFRC piles tend to have more load-carrying capacity than the CC piles under all types of loadings.

期刊论文 2024-08-01 DOI: 10.1007/s10706-024-02795-4 ISSN: 0960-3182

Loess has the characteristics of loose, large pore ratio, and strong water sensitivity. Once it encounters water, its structure is damaged easily and its strength is degraded, causing a degree of subgrade settlement. The water sensitivity of loess can be evaluated by permeability and disintegration tests. This study analyzes the effects of guar gum content, basalt fiber content, and basalt fiber length on the permeability and disintegration characteristics of solidified loess. The microstructure of loess was studied through scanning electron microscopy (SEM) testing, revealing the synergistic solidification mechanism of guar gum and basalt fibers. A permeability model was established through regression analysis with guar gum content, confining pressure, basalt fiber content, and length. The research results indicate that the addition of guar gum reduces the permeability of solidified loess, the addition of fiber improves the overall strength, and the addition of guar gum and basalt fiber improves the disintegration resistance. When the guar gum content is 1.00%, the permeability coefficient and disintegration rate of solidified soil are reduced by 50.50% and 94.10%, respectively. When the guar gum content is 1.00%, the basalt fiber length is 12 mm, and the fiber content is 1.00%, the permeability of the solidified soil decreases by 31.9%, and the disintegration rate is 4.80%. The permeability model has a good fitting effect and is suitable for predicting the permeability of loess reinforced with guar gum and basalt fiber composite. This research is of vital theoretical worth and great scientific significance for guidelines on practicing loess solidification engineering.

期刊论文 2024-07-01 DOI: 10.3390/ma17133150
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共30条,3页