共检索到 2

Timber wood is a building material with many positive properties. However, its susceptibility to microbial degradation is a major challenge for outdoor usage. Although many wood-degrading fungal species are known, knowledge on their prevalence and diversity causing damage to exterior structural timber is still limited. Here, we sampled 46 decaying pieces of wood from outdoor constructions in the area of Hamburg, Germany; extracted their DNA; and investigated their microbial community composition by PCR amplicon sequencing of the fungal ITS2 region and partial bacterial 16S rRNA genes. In order to establish a link between the microbial community structure and environmental factors, we analysed the influence of wood species, its C and N contents, the effect of wood-soil contact, and the importance of its immediate environment (city, forest, meadow, park, respectively). We found that fungal and bacterial community composition colonising exterior timber was similar to fungi commonly found in forest deadwood. Of all basidiomycetous sequences retrieved, some, indicative for Perenniporia meridionalis, Dacrymyces capitatus, and Dacrymyces stillatus, were more frequently associated with severe wood damage. Whilst the most important environmental factor shaping fungal and bacterial community composition was the wood species, the immediate environment was important for fungal species whilst, for the occurrence of bacterial taxa, soil contact had a high impact. No influence was tangible for variation of the C or N content. In conclusion, our study demonstrates that wood colonising fungal and bacterial communities are equally responsive in their composition to wood species, but respond differently to environmental factors.

期刊论文 2024-12-01 DOI: 10.1007/s00253-024-13089-3 ISSN: 0175-7598

Boreal forests in permafrost zone store significant quantities of carbon that are readily threatened by increases in fire frequency and temperature due to climate change. Soil carbon is primarily released by microbial decomposition that is sensitive to environmental conditions. Under increasing disturbances of wildfire, there is a pressing need to understand interactions between wildfires and microbial communities, thereby to predict soil carbon dynamics. Using Illumina MiSeq sequencing of bacterial 16S rDNA and GeoChip 5.0K, we compared bacterial communities and their potential functions at surface and near-surface permafrost layers across a chronosequence ( > 100 years) of burned forests in a continuous permafrost zone. Postfire soils in the Yukon and the Northwest Territories, Canada, showed a marked increase in active layer thickness. Our results showed that soil bacterial community compositions and potential functions altered in 3-year postfire forest (Fire(3)) comparing to the unburned forests. The relative abundance of Ktedonobacteria (Chloroflexi) was higher in Fire(3) surface soils, while Alphaproteobacteria and Betaproteobacteria (Proteobacteria) were more abundant in unburned ones. Approximately 37% of the variation in community composition can be explained by abiotic variables, whereas only 2% by biotic variables. Potential functional genes, particularly for carbon degradation and anammox, appeared more frequent in Fire 3 than in unburned soils. Variations in functional gene pools were mainly driven by environmental factors (39%) and bacterial communities (20%; at phylum level). Unexpectedly, wildfire solely altered bacterial communities and their functional potentials of the surface layers, not the near-permafrost layers. Overall, the response of bacterial community compositions and functions to wildfire and the environment provides insights to re-evaluate the role of bacteria in decomposition.

期刊论文 2020-12-01 DOI: 10.1016/j.apsoil.2020.103713 ISSN: 0929-1393
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页