共检索到 3

This study aims to investigate the biodegradation potential of a gut bacterial strain, Bacillus cereus AP-01, isolated from Tenebrio molitor larvae fed Styrofoam, focusing on its efficacy in degrading low-density polyethylene (LDPE). The biodegradation process was evaluated through a series of assays, including clear zone assays, biodegradation assays, and planktonic cell growth assessments in mineral salt medium (MSM) over a 28-day incubation period. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were employed to characterize the alterations in LDPE pellets, followed by molecular characterization. Over three months, sterile soil + LDPE pellets were treated with different concentrations of gut bacterial strain. The degradation capabilities were assessed by measuring pH, total microbial counts, carbon dioxide evolution, weight loss, and conducting phase contrast microscopy and mechanical strength tests. Results demonstrated that MSM containing LDPE as a carbon source with gut bacterial strain produced a clear zone and enhanced planktonic cell growth. FTIR analysis revealed the formation of new functional groups in the LDPE, while SEM images displayed surface erosion and cracking, providing visual evidence of biodegradation. Molecular characterization confirmed the strain as Bacillus cereus AP-01 (NCBI Accession Number: OR288218.1). A 10% inoculum concentration of Bacillus cereus AP-01 exhibited increased soil bacterial counts, carbon dioxide evolution, and pH levels, alongside a notable weight loss of 30.3% in LDPE pellets. Mechanical strength assessments indicated substantial reductions in tensile strength (7.81 +/- 0.84 MPa), compression (4.92 +/- 0.53 MPa), hardness (51.96 +/- 5.62 shore D), flexibility (10.62 +/- 1.15 MPa), and impact resistance (14.79 +/- 0.94 J). These findings underscore the biodegradation potential of Bacillus cereus AP-01, presenting a promising strategy for addressing the global LDPE pollution crisis.

期刊论文 2025-02-01 DOI: 10.1007/s10532-024-10107-z ISSN: 0923-9820

Background: Bacillus cereus is a widespread environmental Gram-positive bacterium which is especially common in soil and dust. It produces two types of toxins that cause vomiting and diarrhea. At present, foodborne outbreaks due to Bacillus cereus group bacteria (especially Bacillus cereus sensu stricto) are rising, representing a serious problem in the agri-food supply chain. Methods: In this work, we analyzed 118 strains belonging to the Bacillus cereus group, isolated from several food sources, for which in vitro and in silico antibiotic resistance assessments were performed. Results: Many strains showed intermediate susceptibility to clindamycin, erythromycin, and tetracycline, suggesting an evolving acquisition of resistance against these antibiotics. Moreover, one strain showed intermediate resistance to meropenem, an antibiotic currently used to treat infections caused by Bacillus cereus. In addition to the phenotypic antimicrobial resistance profile, all strains were screened for the presence/absence of antimicrobial genes via whole-genome sequencing. There was inconsistency between the in vitro and in silico analyses, such as in the case of vancomycin, for which different isolates harbored resistance genes but, phenotypically, the same strains were sensitive. Conclusions: This would suggest that antibiotic resistance is a complex phenomenon due to a variety of genetic, epigenetic, and biochemical mechanisms.

期刊论文 2024-09-01 DOI: 10.3390/antibiotics13090898 ISSN: 2079-6382

Current research was performed to look for the performance of Bacillus cereus PY3 for metal detoxification. Strain PY3 was recognized as B. cereus using 16 S rRNA. Higher rate of removal of Zn and Cr (VI) by PY3 was obtained between pH 6-8 and 100-500 mu g/mL in 24 h. Highest removal of Cr6+ by strain PY3 was achieved at acidic, neutral, and alkaline atmosphere, 100-300 mu g Cr6+/mL and 25-35 degrees C. Supernatant of PY3 detoxified Cr6+ into Cr3+ then cell pellet (debris) adsorbed them. The mechanism of metal removal was due to the release of cytolic extracts. Release of antioxidants and bio-film played a protective role against cell damage. Metals increased antioxidants and bio-film formation. SEM images showed the smooth external structure of PY3 when cells were exposed to metals thus confirming the role of cells for detoxification. Results Above facts conclude that PY3 can remove metallic pollution in polluted soil.

期刊论文 2024-03-01 DOI: 10.1002/jobm.202300589 ISSN: 0233-111X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页