Background This study investigated the effect of B. Subtilis bacteria on the properties of cement mortar. This was done by using soil samples from Sharkia, Egypt, to isolate 48 bacterial strains, after which they were cultured using the Johnson method and various media. Bacteria were then added to the cement mortar in amounts of 5% and 10% by weight to evaluate their effect on the mechanical and chemical properties of the modified mortar. Results The study examined the compressive and flexural strength of the modified mortar over time, as well as its microscopic properties and chemical composition after 28 days. The results indicated that bacterial additions of 5% and 10% increased the compressive strength of the mortar after 28 and 56 days compared to the control. A 5% bacteria concentration resulted in significant improvements in strength, showing the best concentration for increasing mortar strength. The addition of 5% bacteria significantly enhanced the early flexure strength, while the 10% showed superior long-term strength after 56 days. Scanning electron microscopy (SEM) revealed high CaCO3 deposits in the bacterial samples, indicating microbial-induced calcite precipitation that filled the small cracks and increased strength. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of hydroxyl, carbonate, and silicate groups, with bacterial samples having a higher carbonate content, indicating an increase in calcium carbonate formation and microstructure. Conclusions The ideal bacterial concentration was 5% as it improved the compressive and flexural strength while also promoting a more flexible microstructure. This study supports the employment of microorganisms in the production of more durable and environmentally friendly building materials, enhancing the sustainability of building practices.
One of the latest trends in sustainable agriculture is the use of beneficial microorganisms to stimulate plant growth and biologically control phytopathogens. Bacillus subtilis, a Gram-positive soil bacterium, is recognized for its valuable properties in various biotechnological and agricultural applications. This study presents, for the first time, the successful encapsulation of B. subtilis within electrospun poly(3-hydroxybutyrate) (PHB) fibers, which are dip-coated with cellulose derivatives. In that way, the obtained fibrous biohybrid materials actively ensure the viability of the encapsulated biocontrol agent during storage and promote its normal growth when exposed to moisture. Aqueous solutions of the cellulose derivatives-sodium carboxymethyl cellulose and 2-hydroxyethyl cellulose, were used to dip-coat the electrospun PHB fibers. The study examined the effects of the type and molecular weight of these cellulose derivatives on film formation, mechanical properties, bacterial encapsulation, and growth. Scanning electron microscopy (SEM) was utilized to observe the morphology of the biohybrid materials and the encapsulated B. subtilis. Additionally, ATR-FTIR spectroscopy confirmed the surface chemical composition of the biohybrid materials and verified the successful coating of PHB fibers. Mechanical testing revealed that the coating enhanced the mechanical properties of the fibrous materials and depends on the molecular weight of the used cellulose derivatives. Viability tests demonstrated that the encapsulated B. subtilis exhibited normal growth from the prepared materials. These findings suggest that the developed fibrous biohybrid materials hold significant promise as biocontrol formulations for plant protection and growth promotion in sustainable agriculture.