On December 18, 2023, an Ms6.2 earthquake struck Jishishan County, Gansu Province, in western China. The China Earthquake Early Warning Network (CEEWN) captured extensive near-field ground motion data using high-density microelectromechanical system (MEMS) sensors and force-balanced accelerographs (FBAs). Through noise level and usable frequency range assessments of MEMS/FBA recordings, we compiled a strong- motion dataset encompassing the Ms6.2 mainshock and 13 aftershocks (Ms >= 3.0). Analysis of this dataset revealed distinct source characteristics and site effects through spatial distributions and attenuation patterns of peak ground acceleration (PGA, up to 1.1 g at station N002B), peak ground velocity (PGV), and spectral accelerations (SAs) across various periods. The mainshock's near-fault motions exhibited pronounced short-period energy, with 0.2 s SAs exceeding 1.0 gin intensity zones VII-VIII due to hanging wall effects, soil amplification, and topographic influences. Site-to-reference ratio (SSR) analysis identified site nonlinearity above 1 Hz and amplification between 1 and 10 Hz. Observed PGAs and short-period SAs surpassed ground motion model (GMM) predictions with faster attenuation rates, while long-period SAs (>1.0 s) remained below predictions. Residual analysis of intensity measures (IMs) and horizontal-to-vertical spectral ratios (HVSRs) demonstrated progressive site nonlinearity, showing HVSR frequency reductions and amplitude declines at PGAs >500 cm/s(2). This dataset advances regional ground motion model (GMM) development, while our findings on strong ground motion characteristics offer critical insights for earthquake damage assessment and post-disaster reconstruction.
The phenomena of dry shrinkage and wet expansion and frost heave and thaw settlement in expansive soils in seasonally frozen regions have caused numerous engineering problems. This study focuses on the strength degradation and slope instability in expansive soil water channels of the Northern Xinjiang water supply project. Using drying-wetting and freezing-thawing cycles as experimental conditions, the research includes moisture content monitoring at various depths to analyze soil moisture variation patterns during different stages. Additionally, laboratory experiments are conducted to study the effects of these cycles on non-uniform deformation, strength degradation, and microstructure damage in expansive soils. The results reveal that: 1) Under drying-wetting and freezing-thawing conditions, expansive soils at certain depths of the channel foundation exhibit significant moisture content fluctuations. The most significant variations occur during the freeze-thaw phase, establishing a phase change dynamic zone within the expansive soil. 2) Drying-wetting and freezing-thawing cycles cause significant microstructural damage in expansive soils, marked by continuous crack development and expansion with increasing cycle frequency. The soil experiences persistent dry shrinkage and wet expansion and frost heave and thaw settlement effects. In the early stages of drying-wetting and freezing-thawing action, expansive deformation significantly contributes to total deformation. However, after a certain number of cycles, both volumetric and expansive soil deformation gradually stabilize. 3) Expansive soils exhibit varying degrees of degradation in shear strength and strength parameters. Cohesion degrades more significantly, following an exponential decrease, while the internal friction angle experiences a less pronounced reduction. In the early stages of dry-wet and freeze-thaw cycles, cohesion degradation accounts for 41.2% to 48.6% of the total degradation rate. The significant decrease in soil cohesion leads to shallow landslides in expansive soil slopes of channel foundations, highlighting the crucial role of cohesion in slope instability.
Offshore wind power is a hot spot in the field of new energy, with foundation construction costs representing approximately 30% of the total investment in wind farm construction. Offshore wind turbines are subjected to long-term cyclic loads, and seabed materials are prone to causing stiffness degradation. The accurate disclosure of the mechanical properties of marine soil is critical to the safety and stability of the foundation structure of offshore wind turbines. The stiffness degradation laws of mucky clay and silt clay from offshore wind turbines were firstly investigated in the study. Experiments found that the variations in the elastic modulus presented L-type attenuation under small cyclic loads, and the degradation coefficient fleetingly decayed to the strength progressive line under large cyclic loads. Based on the experimental results, a random forest prediction model for the elastic modulus of the submarine soil was established, which had high prediction accuracy. The influence of testing the loading parameters of the submarine soil on the prediction results was greater than that of the soil's physical property parameters. In criticality, the CSR had the greatest impact on the prediction results. This study provides a more efficient method for the stiffness degradation assessment of submarine soil materials in offshore wind farms.
The rock-based sea area has great prospect of development and construction of offshore wind farms (OWFs), and the mainstream construction sites of OWFs in China have shifted from the soil-based seabed to the rock-based seabed area. Previous studies about mechanical properties of seabed materials and bearing characteristics of pile foundation in OWF mainly focus on the submarine soil-based seabed, resulting in lack of direct reference for the construction of offshore wind power in the rock seabed. Therefore, the study concentrates on the investigation of failure criterion of submarine completely weathered granite (CWG) of offshore wind farms in rockbased sea area under cyclic loads. Firstly, dynamic triaxial tests are carried out, and two unique development modes of CWG are revealed under different cyclic loads. The experiments analyze insight stiffness attenuation law and establish the prediction model of stiffness attenuation based on the logarithm formula. More critical, a unique development law of damping ratio of submarine seabed materials is discovered and discussed, and two cyclic failure criteria based on cumulative strain and dissipated energy are put forward to divide the critical CSR under cyclic loads, which gives helpful reference for the construction of offshore wind farms in rock-based sea area.
In saline soil areas, the concrete piers of concrete bridges experience long-term corrosion, mainly caused by chloride salts due to alternating temperature changes. Waterborne concrete coatings are prone to failure in this aggressive salt environment. Implementing coating protection measures can improve the durability of concrete and enhance the service life of bridges. However, the effectiveness and longevity of coatings need further research. In this paper, three types of waterborne concrete anti-corrosion coatings were applied to analyze the macro and micro surface morphology under wet-dry cycles and long-term immersion conditions. Various indicators such as glossiness, color difference, and adhesion of the coatings were tested during different cyclic periods. The chloride ion distribution characteristics of the buried concrete coatings in saline soil, the macro morphology analysis of chloride ion distribution regions, and the micro morphology changes of the coatings under different corrosion times were also investigated. The results showed that waterborne epoxy coatings (ES), waterborne fluorocarbon coatings (FS), and waterborne acrylic coatings (AS) all gradually failed under long-term salt exposure, with increasing coating porosity, loss of internal fillers, and delamination. The chloride ion content inside the concrete decreased with increasing depth at the same corrosion time, while the chloride ion content at the same depth increased with time. The chloride ion distribution boundary in the cross- of concrete with coating protection was not significant, while the chloride ion distribution boundary in the cross- of untreated concrete gradually contracted towards the concrete core with increasing corrosion time. During the corrosion process in saline soil, the coatings underwent three stages: adherence of small saline soil particles, continuous increase in adhered material area, and multiple layers of uneven coverage by saline soil. The failure process of the coatings still required erosive ions to infiltrate the surface through micropores. The predicted lifespans of FS, ES, and AS coatings, obtained through weighted methods, were 2.45 years, 2.48 years, and 2.74 years, respectively, which were close to the actual lifespans observed in salt environments. The developed formulas effectively reflect the corrosion patterns of different resin-based coatings under salt exposure, providing a basis for accurately assessing the corrosion behavior and protective effectiveness of concrete under actual environmental factors.
Soil compaction and soil bulk density are key soil properties affecting soil health and soil ecosystem services like crop production, water retention and purification and carbon sequestration. The standard method for soil bulk density measurements using Kopecky rings is very labour intensive, time consuming and leaves notable damage to the field. Accurate data on bulk density are therefore scarce. To enable large-scale data collection, we tested a new portable gamma ray sensor (RhoC) for in situ field and dry bulk density measurements up to 1 m depth. In this first validation study, measurements with the RhoC-sensor were compared with classic ring sampling. Measurements were made in two agricultural fields in the Netherlands (a sandy clay loam and a sandy soil), with large variation in subsoil compaction. At 10 locations within each field, three soil density profiles were made. Each profile comprised six depth measurements (every 10 cm from 10 to 60 cm depth) using the RhoC-sensor and Kopecky rings, resulting in 30 pairwise profiles and 180 measurements in total per field. At an average soil density of 1.5 g/cm3, the relative uncertainty was 9% for the Kopecky rings and 15% for the RhoC-sensor. Because the RhoC-sensor is easy and quick to use, the higher relative uncertainty can easily be compensated for by making additional measurements per location. In conclusion, the RhoC-sensor allows a reliable quantitative in situ assessment of both field and dry bulk density. This provides the much-needed possibility for rapid and accurate assessment of soil compaction. The acquisition of this data supports the calculation of soil organic carbon stocks and is indispensable for (national) soil monitoring, to assess soil health and to inform sustainable land management practices for sustained or improved soil health and provision of soil ecosystem services, such as requested in the proposed EU Directive on Soil Monitoring and Resilience.
Reservoir geologic fluid-bearing granular materials are characterized by multiscale nonuniformity and coupled multiphysical mechanisms, for which conventional poroelastic theory cannot accurately portray wave dispersion and attenuation characteristics. To design a suitable dielectric wave propagation model to characterize the dispersion and attenuation laws of dynamic waves in geologic reservoirs, first, the branching functions of frequency-dependent dynamic permeability and dynamic tortuosity are derived by considering the effects of the geometry and fractal structure of fluid-bearing granular materials on the high-frequency properties of permeability and tortuosity. Second, the stress-strain relationship of the fluid-particle system is redrawn by the viscoelastic-plastic constitutive relation, and the dynamic wave propagation model of fluid-containing granular materials at a unified frequency is constructed by an integrated dissipation mechanism including frictional dissipation, internal dissipation, and plastic energy dissipation-wave propagation model based on viscoelasticplastic constitutive relation and dynamic permeability (WVPDP model). Finally, the reliability of the WVPDP model is verified by carrying out wave velocity tests on saturated dolomite and sandstone, and the effects of different parameters on the wave velocity dispersion amplitude and attenuation peak are analysed. The results show that the WVPDP model can accurately characterize the dispersion and attenuation of dynamic waves in granular media under uniform high and low frequencies and can invoke different dissipation mechanisms at different excitation frequency intervals, which is shown by the fact that internal dissipation and the plastic mechanism play the main role in the low-frequency interval, and frictional dissipation gradually replaces internal dissipation and plastic dissipation to become the main dissipation mechanism with increasing excitation frequency. Parameters such as fluid viscosity, reference angular frequency and reference quality can have different effects on the dispersion amplitude and transition band range of the fast P-wave and S-wave, the two mechanical response mechanisms in the medium of fluid-containing granular materials.
The risk of frost damage to building materials is strongly dependent on the water content, particularly when the water content is high. Therefore, to understand the moisture behavior of materials with high water content is essential to predict the frost damage risks of buildings. While little liquid water transfer takes place over the capillary saturation under unfrozen conditions, the pressure drop of the unfrozen water contained in the frozen domain (cryosuction) may be a strong driving force for water transfer during the freezing processes. Therefore, in this study, we investigated water transfer in a building material over capillary saturation during freezing through a one-dimensional freezing experiment using the gamma-ray attenuation method and hygrothermal simulations. In the experiment, an aerated concrete specimen, with a water content greater than the capillary saturation, was subjected to a temperature gradient by cooling the specimen bottom to the freezing temperature. The results show that significant water transfer occurred even in the capillary-saturated material during freezing and thawing. Water moved to the cold side in the material and the most significant water accumulation was observed at a position where the temperature was close to 0 degrees C. The hygrothermal simulation, including the freezing processes, confirmed that cryosuction was a dominant driving force of water movement and accumulation in the material compared with other driving forces, such as gravity and temperature gradient. Moreover, mechanism of the water accumulation at a position where the temperature was close to 0 degrees C was discussed from the perspective of water chemical potential distribution and water conductivity of the material. The findings of this study will help develop a more reliable model for evaluating moisture damage risks by considering the hygrothermal behaviors of building envelopes.
The recent seismic activity on Turkiye's west coast, especially in the Aegean Sea region, shows that this region requires further attention. The region has significant seismic hazards because of its location in an active tectonic regime of North-South extension with multiple basin structures on soft soil deposits. Recently, despite being 70 km from the earthquake source, the Samos event (with a moment magnitude of 7.0 on October 30, 2020) caused significant localized damage and collapse in the Izmir city center due to a combination of basin effects and structural susceptibility. Despite this activity, research on site characterization and site response modeling, such as local velocity models and kappa estimates, remains sparse in this region. Kappa values display regional characteristics, necessitating the use of local kappa estimations from previous earthquake data in region-specific applications. Kappa estimates are multivariate and incorporate several characteristics such as magnitude and distance. In this study, we assess and predict the trend in mean kappa values using three-component strong-ground motion data from accelerometer sites with known VS30 values throughout western Turkiye. Multiple linear regression (MLR) and multivariate adaptive regression splines (MARS) were used to build the prediction models. The effects of epicentral distance Repi, magnitude Mw, and site class (VS30) were investigated, and the contributions of each parameter were examined using a large dataset containing recent seismic activity. The models were evaluated using well-known statistical accuracy criteria for kappa assessment. In all performance measures, the MARS model outperforms the MLR model across the selected sites.
Seismic waves exhibit distinct attenuation characteristics that are contingent upon the medium they traverse. The attenuation characteristics can be employed to monitor engineering activities, such as detecting gas pipeline leaks and third-party intrusions, by the utilization of Distributed Acoustic Sensing (DAS) technology. This study aims to explore the feasibility of identifying the seismic wave attenuation characteristics of different soils using DAS. A circular experimental pit with a diameter of 1 m was designed to measure the responses of various soils. Seismic waves were recorded while propagating through sand and clay under different overlying pressure conditions, encompassing both dry and wet states. The waveform data, collected at various distance from the point of excitation, were analyzed using Power Spectral Density (PSD), Continuous Wavelet Transform (CWT), and quality factor analysis. The energy attenuation amplitude of seismic waves shows an opposite pattern in sand and clay as water content increased. By utilizing the seismic wave attenuation characteristics, it is possible to issue timely warnings for identifying third-party intrusions around urban underground tunnels and pipelines to mitigate potential damage to underground infrastructure.