We present a high-resolution geologic map of the Rubin crater region, located on Mons Amundsen, which has been identified as a promising site for future lunar exploration (AOI E in Wueller et al., 2024). We developed a design reference mission (DRM) to highlight the region's potential for addressing key lunar science goals, particularly those related to the early lunar bombardment history, lunar crustal rocks, volatiles, impact processes at multiple scales, and regolith properties, as outlined by the National Research Council (2007). The Rubin crater, which formed about 1.58 billion years ago during the Eratosthenian period, excavated material from depths of up to 320 m, potentially reaching the underlying South Pole-Aitken (SPA) massif, Mons Amundsen. This makes the crater's ejecta material, along with the Amundsen ejecta covering the massif, prime targets for sampling SPA-derived materials that can expand our understanding of early Solar System dynamics and the lunar cratering chronology. Additionally, the region hosts several permanently shadowed regions (PSRs), ideal for studying potential lunar volatiles and the processes affecting their distribution. The DRM proposes nine traverse options for exploration via walking EVAs, the Lunar Roving Vehicle (LRV), and LRV-assisted EVAs, with traverse lengths ranging from 3.6 km to 18.2 km. Each traverse is designed to sample diverse geologic units and address multiple scientific objectives. Given its scientific potential and favorable exploration conditions, the Rubin crater region is an ideal location for testing south polar landing operations, potentially paving the way for more complex missions, such as a Shackleton crater landing. (c) 2025 The Author(s). Published by Elsevier B.V. on behalf of COSPAR. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
Herein, CuO and ZnO nanoparticles (NPs) were biogenically synthesized using plant (Artemisia vulgaris) extracts. The biogenic NPs were subsequently evaluated in vitro for antifungal activity (200 mg/L) against Fusarium virguliforme (FV; the cause of soybean sudden death), and for crop protection (200-500 mg/L) in FV-infested soybean. ZnONPs exhibited 3.8-, 2.5-, and 4.9-fold greater in vitro antifungal activity, compared to Zn or Cu acetate salt, the Artemisia extract, and a commercial fungicide (Medalion Fludioxon), respectively. The corresponding CuONP values were 1.2-, 1.0-, and 2.2-fold, respectively. Scanning electron microscopy (SEM) revealed significant morpho-anatomical damage to fungal mycelia and conidia. NP-treated FV lost their hyphal turgidity and uniformity and appeared structurally compromised. ZnONP caused shriveled and broken mycelia lacking conidia, while CuONP caused collapsed mycelia with shriveled and disfigured conidia. In soybean, 200 mg/L of both NPs enhanced growth by 13%, compared to diseased controls, in both soil and foliar exposures. Leaf SEM showed fungal colonization of different infection sites, including the glandular trichome, palisade parenchyma, and vasculature. Foliar application of ZnONP resulted in the deposition of particulate ZnO on the leaf surface and stomatal interiors, likely leading to particle and ion entry via several pathways, including ion diffusion across the cuticle/stomata. SEM also suggested that ZnO/CuO NPs trigger structural reinforcement and anatomical defense responses in both leaves and roots against fungal infection. Collectively, these findings provide important insights into novel and effective mechanisms of crop protection against fungal pathogens by plant-engineered metal oxide nanoparticles, thereby contributing to the sustainability of nano-enabled agriculture.
Desertification is a global environmental issue that significantly threatens ecosystem stability and vegetation restoration in arid regions. This study proposes a multiple treatment strategy combining Artemisia sphaerocephala Krasch. gum (ASKG) with Enzyme-Induced Carbonate Precipitation (EICP) to enhance wind erosion control and seed germination. The effects of this approach were evaluated through field experiments. The results showed that single EICP treatment improved soil water retention and surface strength. However, high-concentration EICP treatment (>= 0.2 mol/L Cementation Solution, CS) induced salt stress, which suppressed plant survival. In contrast, when low-concentration EICP (0.1 mol/L CS) was combined with ASKG, a stable crust formed, improving surface strength and crust thickness, while preventing damage to the crust during early plant growth. The addition of 1.0 g/L ASKG reduced wind erosion depth by 67%, increased average moisture content to 7.4%, and promoted better seed germination, showing strong ecological compatibility and long-term stability. Furthermore, the second EICP treatment optimized the soil pore structure by adding CaCO3 precipitates, which increased average moisture content to 10.6% and increased surface strength by 114.5%. Microstructural analysis revealed that ASKG formed film or mesh structure around CaCO3 crystals, enhancing soil wind erosion resistance and water retention. Overall, the findings suggest that the multiple treatment strategy of EICP combined with ASKG successfully overcomes the ecological limitations of traditional high-concentration EICP, providing a sustainable solution for wind erosion control and vegetation restoration in desert areas.
To reveal the evolution law of the mechanical failure of the root-soil composite and identify the main control factors and their coupling and mutual feeding relationship, this paper takes the most common naturally growing plants in Yan 'an area as the research object and studies the evolution process of the mechanical deformation and failure of the root-soil composite by applying the methods of in-situ pull-out test, indoor direct shear test of the root-soil composite, numerical simulation, and theoretical analysis. The mechanical characteristics of root-soil interaction were analyzed, and the mechanism of root-soil fixation was explained. The results show that: (1) the root-soil composite's mechanical deformation and failure characteristics have obvious regularity and stages and are affected by plant growth state, root morphology, soil physical and mechanical properties, and other factors. (2) There are obvious evolutionary stages in the deformation and failure process of the root-soil composite, that is, the coordinated deformation stage of the root-soil, the stress redistribution stage, the secondary root break stage, the main root break stage and the complete failure stage, which correspond to the linear deformation section, the acceleration section, the shock rise section, the steep fall and the residual deformation of the F-S curve (Force-displacement curve)obtained by the in-situ pull out test. (3) In the in-situ pull-out test, the final failure body of the root-soil composite was inverted cone shape. The root fracture interface was basically near the boundary of the final inverted cone failure body, in which the stress state of the root system was directly affected by the stress-strain state of the microelement and the characteristics of the root material. (4) The plant roots showed obvious oblique deformation and axial tensile stress with the soil shear dislocation on the fracture surface, which verified the rationality of the oblique root hypothesis based on the transformation of shear stress to tensile stress.
Numerous missions to the Moon have identified and documented volatile deposits associated with permanently shadowed regions. A series of science goals for the Artemis Program is to explore these volatile deposits and return samples to Earth. Volatiles in these reservoirs may consist of a variety of species whose stable isotope characteristics could elucidate both their sources and the processes instrumental in their formation. For example, the delta D of potential contributors to the deposits can be used to identify a uniquely light solar wind component. Because of the exceptionally low temperatures of these volatile deposits, examining and interpreting their stable isotope systems to fulfill Artemis science goals through sampling, preserving, curating, and analyzing these samples are far more difficult than for other sample return missions. Collecting and preserving the samples at cryogenic temperatures dramatically increases science yield but is technologically demanding and poses increased risk during transport.
From the scientific perspective, Artemis lunar missions focus on the south circumpolar region (SCR) mainly to investigate the existence and abundance of volatiles and to explore and sample ancient lunar deposits. The volatile distribution is primarily related to the cold traps in permanently shadowed regions, while the availability of ancient material is due to the proximity to the early lunar -2300 km diameter South Pole-Aitken (SPA) impact basin. One of the critical factors for future missions will be determining the geological structure and provenance (sources) of material at each candidate landing site, which can be predicted utilizing three-dimensional stratigraphic reconstructions of geological map units and crater ejecta deposits. This type of reconstruction permits a better understanding of candidate material that can be collected and analyzed at each site, and a ranking of landing sites can be formulated on this basis. Here, we present reconstructed geological cross-sections at Artemis landing sites using our recent SCR geological map and numerical modelling of crater ejecta thicknesses and their sequence.
The lunar south polar region is of specific interest with a much higher probability for finding water ice and volatile resources in the permanently shadowed regions (PSRs). Here, the uneven topography coupled with very low axial inclination of the Moon of similar to 1.5(o) helps in maintaining a perennial temperature below 110 K in relatively broad areas. Along with the possibility of finding water ice and other volatiles that can be used for future explorations, the south polar region is expected to be compositionally diverse being situated inside the South Pole Aitken Basin (SPA). Though several lunar polar missions were planned, none of them have yet experienced and explored the unique polar environment in-situ. Several sites have been identified majorly based on technical feasibility of landing. The polar sites are challenging to land due to the difficult terrain and limited information about its characteristics. In this study, we selected a ridge region connecting two PSRs: de-Gerlache and Shackleton, and evaluated four sites in that ridge and prioritized them based on the expected scientific outcomes and feasibility to access a PSR for volatile detection and quantification. Our detailed analysis of landing sites is based on terrain characteristics, which include slope, illumination, surface roughness, surface temperature, accessibility to nearby PSRs, compositional diversity, and trafficability. Moreover, multiple micro PSRs have been identified in close vicinity of four landing sites that can potentially trap water ice and other volatiles. We find that the site C1 (-136.2 degrees, - 89.406 degrees) situated on the ridge connecting de-Gerlache and Shackleton, and site D (-87.514 degrees, -89 degrees) situated on the rim of de-Gerlache are the most promising sites that can be considered for near future polar exploration missions. These sites provide opportunity of exploration utilizing solar power without compromising on scientific outcomes. Both the sites are found to be in close vicinity of PSR providing opportunities to sample volatiles. The sites C1 and D provide a good alternative to site S (-158.162 degrees, -89.769 degrees) located on Shackleton crater rim, which is considered to be scientifically enriched but technically challenging for landing.
The Artemis exploration zone is a topographically complex impact-cratered terrain. Steep undulating slopes pose a challenge for walking extravehicular activities (EVAs) anticipated for the Artemis III and subsequent missions. Using 5 m/pixel Lunar Orbiter Laser Altimeter (LOLA) measurements of the surface, an automated Python pipeline was developed to calculate traverse paths that minimize metabolic workload. The tool combines a Monte Carlo method with a minimum-cost path algorithm that assesses cumulative slope over distances between a lander and stations, as well as between stations. To illustrate the functionality of the tool, optimized paths to permanently shadowed regions (PSRs) are calculated around potential landing sites 001, nearby location 001(6), and 004, all within the Artemis III 'Connecting Ridge' candidate landing region. We identified 521 PSRs and computed (1) traverse paths to accessible PSRs within 2 km of the landing sites, and (2) optimized descents from host crater rims into each PSR. Slopes are limited to 15 degrees degrees and previously identified boulders are avoided. Surface temperature, astronaut body illumination, regolith bearing capacity, and astronaut-to-lander direct view are simultaneously evaluated. Travel times are estimated using Apollo 12 and 14 walking EVA data. A total of 20 and 19 PSRs are accessible from sites 001 and 001(6), respectively, four of which maintain slopes <10 degrees. degrees . Site 004 provides access to 11 PSRs, albeit with higher EVA workloads. From the crater rims, 94 % of PSRs can be accessed. All round-trip traverses from potential landing sites can be performed in under 2 h with a constant walk. Traverses and descents to PSRs are compiled in an atlas to support Artemis mission planning.
The NASA Artemis program will send humans to the lunar south polar region, in part to investigate the availability of water ice and other in situ resources. While trace amounts of ice have been detected at the surface of polar permanently shadowed regions (PSRs), recent studies suggest that large ice deposits could be stable below cold traps in the PSRs over geologic time. A recent study modeling the rate of ice delivery, ejecta deposition and ice loss from cold traps predicted that gigatons of ice could be buried below 100s of meters of crater ejecta and regolith. However, crater ejecta vigorously mix the target on impact through ballistic sedimentation, which may disrupt buried ice deposits. Here, we developed a thermal model to predict ice stability during ballistic sedimentation events. We then modeled cold trap ice and ejecta stratigraphy over geologic time using Monte Carlo methods. We found that ballistic sedimentation disrupted large ice deposits in most cases, dispersing them into smaller layers. Ice retention decreased in most cases, but varied significantly with the sequence of ejecta delivery, particularly from basin-forming events. Over many model runs, we found that south polar craters Amundsen, Cabeus, and Cabeus B were most likely to retain large deposits of ice at depths up to 100 m, shallow enough to be detectable with ground-penetrating radar. We discuss these findings in the context of the imminent human exploration activities at the lunar south pole.Plain Language Summary Some craters near the south pole of the Moon contain permanently shadowed regions (PSRs) which stay cold enough to trap water vapor as ice. Recent studies have predicted that large amounts of ice could be buried under thick protective layers of lunar soil in the PSRs. Lunar soil is mainly transported by large impacts which launch soil and boulders to distances up to hundreds of kilometers. However, when these projectiles land they have destructive effects and may melt or redistribute buried ice. We simulated this process, called ballistic sedimentation, and predicted the amount of ice it removes. We also simulated ice and soil deposition over billions of years to test how much ice is lost to ballistic sedimentation over time. We predicted which PSRs are most likely to have ice near enough to the surface to detect in future missions. The upcoming Artemis program will send crewed and robotic missions to the lunar south pole region, and our work will help with planning where to land, what instruments to bring, and how much ice we might find.
Commercial lunar resource extraction activities could become a reality in the mid to long term. Under the existing Outer Space Treaty, there is ambiguity regarding the legal context within which such activities could occur. The Artemis Accords, signed in 2020, are proposed as a mechanism by which space resource extraction activities could take place, with a key proposal of the Accords being the use of Safety Zones to facilitate lunar resource extraction. Whilst the use of Safety Zones is ostensibly proposed for small scale In Situ Resource Utilisation (ISRU) activities focussed on lunar water production, messaging around the Artemis Accords has indicated that there may be an intent to use them to set precedent for longer term, larger scale commercial resource activity. This article explores the practicability of using Safety Zones for large scale commercial lunar resource extraction from the perspective of the commercial entities that could undertake such activities. Conceptual long term demand for water sourced from ice contained in the lunar Permanently Shadowed Regions (PSRs) is derived, and the surface area required to produce sufficient water to meet this market demand determined. Due to the potential characteristics of water ice occurrence in the lunar PSRs, the footprint of operations could be substantial, and virtually without precedent in the terrestrial extractive resource industries. The article concludes that the use of the Safety Zones proposed in the Artemis Accords could be impractical for the governance of large scale commercial lunar resource production. It is suggested that whilst small scale ISRU activities take place under the auspices of the Artemis Accords, efforts are continued to develop a multilateral governance framework acceptable to both the international community and to the commercial sector for the potential large scale development of lunar resources.(c) 2022 Elsevier Ltd. All rights reserved.