This study shows the impact of black carbon (BC) aerosol atmospheric rivers (AAR) on the Antarctic Sea ice retreat. We detect that a higher number of BC AARs arrived in the Antarctic region due to increased anthropogenic wildfire activities in 2019 in the Amazon compared to 2018. Our analyses suggest that the BC AARs led to a reduction in the sea ice albedo, increased the amount of sunlight absorbed at the surface, and a significant reduction of sea ice over the Weddell, Ross Sea (Ross), and Indian Ocean (IO) regions in 2019. The Weddell region experienced the largest amount of sea ice retreat (similar to 33,000 km(2)) during the presence of BC AARs as compared to similar to 13,000 km(2) during non-BC days. We used a suite of data science techniques, including random forest, elastic net regression, matrix profile, canonical correlations, and causal discovery analyses, to discover the effects and validate them. Random forest, elastic net regression, and causal discovery analyses show that the shortwave upward radiative flux or the reflected sunlight, temperature, and longwave upward energy from the earth are the most important features that affect sea ice extent. Canonical correlation analysis confirms that aerosol optical depth is negatively correlated with albedo, positively correlated with shortwave energy absorbed at the surface, and negatively correlated with Sea Ice Extent. The relationship is stronger in 2019 than in 2018. This study also employs the matrix profile and convolution operation of the Convolution Neural Network (CNN) to detect anomalous events in sea ice loss. These methods show that a higher amount of anomalous melting events were detected over the Weddell and Ross regions. Impact Statement Sea ice protects ice sheets, which are melting at a very high rate to raise the sea level. In addition to global warming, this study is indicative that black carbon aerosols transported from anthropogenic wildfire events, such as from the Amazon, darken the snow, reduce their reflectance, increase the absorption of solar energy incident on the surface, and exacerbate the sea ice retreat. Thus, this study points out that anthropogenic wildfire impacts far away from a region can have a severe impact on sea ice and ice sheets over the Antarctic which has a sea level rise potential of 60 m. Our study shows that only over the Weddell region, sea ice retreat was 20,000 km(2) higher during the presence of BC transport events than other days in 2019.
Arctic river discharge is one of the important factors affecting sea-ice melting of Arctic shelf seas. However, such effects have not been given much attention. In this study, the changes in discharge of the Ob, Yenisei, and Lena Rivers and the sea ice of the Kara and Laptev Seas during 1979-2019 were analyzed. Substantial increases in discharge and heat from the discharge and decreases in sea ice concentration (SIC) were detected. The effects of changes in discharge and riverine heat on sea ice changes were investigated. The results showed that the influence of the discharge, accumulated discharge, heat, and accumulated heat on SIC mainly occurred at the beginning and final stages of sea-ice melting. Discharge accelerated the melting of sea ice by increasing the absorption of solar radiation as the impurities contained in the discharge washed to the sea ice surface during the initial and late stages of sea-ice melting. Changes in cumulative riverine heat from May to September greatly contributed to the SIC changes in the Kara and Laptev Seas at the seasonal scale. The SIC reduced by 1% when the cumulative riverine heat increased by 213.2 x 10(6) MJ, 181.5 x 10(6) MJ, and 154.6 x 10(6) MJ in the Lena, Yenisei, and Ob Rivers, respectively, from May to September. However, even in the plume coverage areas in the Kara and Laptev Seas, discharge changes from the three rivers had a limited contribution to the reduction in SIC at annual scales. This work is helpful for understanding the changes in Arctic sea ice.
The negative freeboard of sea ice (i.e., the height of ice surface below sea level) with subsequent flooding is widespread in the Southern Ocean, as opposed to the Arctic, due to the relatively thicker ice and thinner snow. In this study, we used the observations of snow and ice thickness from 103 ice mass balance buoys (IMBs) and NASA Operation IceBridge Aircraft Missions to investigate the spatial distribution of negative freeboard of Arctic sea ice. The Result showed that seven IMBs recorded negative freeboards, which were sporadically located in the seas around Northeast Greenland, the Central Arctic Ocean, and the marginal areas of the Chukchi-Beaufort Sea. The observed maximum values of negative freeboard could reach -0.12 m in the seas around Northeast Greenland. The observations from IceBridge campaigns also revealed negative freeboard comparable to those of IMBs in the seas around North Greenland and the Beaufort Sea. We further investigated the large-scale distribution of negative freeboard using NASA CryoSat-2 radar altimeter data, and the result indicates that except for the negative freeboard areas observed by IMBs and IceBridge, there are negative freeboards in other marginal seas of the Arctic Ocean. However, the comparison of the satellite data with the IMB data and IceBridge data shows that the Cryosat-2 data generally overestimate the extent and magnitude of the negative freeboard in the Arctic.
Although much remains to be learned about the Arctic and its component processes, many of the most urgent scientific, engineering, and social questions can only be approached through a broader system perspective. Here, we address interactions between components of the Arctic system and assess feedbacks and the extent to which feedbacks (1) are now underway in the Arctic and (2) will shape the future trajectory of the Arctic system. We examine interdependent connections among atmospheric processes, oceanic processes, sea-ice dynamics, marine and terrestrial ecosystems, land surface stocks of carbon and water, glaciers and ice caps, and the Greenland ice sheet. Our emphasis on the interactions between components, both historical and anticipated, is targeted on the feedbacks, pathways, and processes that link these different components of the Arctic system. We present evidence that the physical components of the Arctic climate system are currently in extreme states, and that there is no indication that the system will deviate from this anomalous trajectory in the foreseeable future. The feedback for which the evidence of ongoing changes is most compelling is the surface albedo-temperature feedback, which is amplifying temperature changes over land (primarily in spring) and ocean (primarily in autumn-winter). Other feedbacks likely to emerge are those in which key processes include surface fluxes of trace gases, changes in the distribution of vegetation, changes in surface soil moisture, changes in atmospheric water vapor arising from higher temperatures and greater areas of open ocean, impacts of Arctic freshwater fluxes on the meridional overturning circulation of the ocean, and changes in Arctic clouds resulting from changes in water vapor content.