共检索到 5

In an era characterized by rapidly changing and less-predictable weather conditions fueled by the climate crisis, understanding the mechanisms underlying local adaptation in plants is of paramount importance for the conservation of species. As the frequency and intensity of extreme precipitation events increase, so are the flooding events resulting from soil water saturation. The subsequent onset of hypoxic stress is one of the leading causes of crop damage and yield loss. By combining genomics and remote sensing data, it is now possible to probe natural plant populations that have evolved in different rainfall regimes and look for molecular adaptation to hypoxia. Here, using an environmental genome-wide association study (eGWAS) of 934 non-redundant georeferenced Arabidopsis ecotypes, we have identified functional variants of the gene MED25 BINDING RING-H2 PROTEIN 1 (MBR1). This gene encodes a ubiquitinprotein ligase that regulates MEDIATOR25 (MED25), part of a multiprotein complex that interacts with transcription factors that act as key drivers of the hypoxic response in Arabidopsis, namely the RELATED TO AP2 proteins RAP2.2 and RAP2.12. Through experimental validation, we show that natural variants of MBR1 have different effects on the stability of MED25 and, in turn, on hypoxia tolerance. This study also highlights the pivotal role of the MBR1/MED25 module in establishing a comprehensive hypoxic response. Our findings show that molecular candidates for plant environmental adaptation can be effectively mined from large datasets. This thus supports the need for integration of forward and reverse genetics with robust molecular physiology validation of outcomes.

期刊论文 2024-12-09 DOI: 10.1016/j.xplc.2024.101074 ISSN: 2590-3462

Agriculture is vital for global food security, and irrigation is essential for improving crop yields. However, irrigation can pose challenges such as mineral scarcity and salt accumulation in the soil, which negatively impact plant growth and crop productivity. While numerous studies have focused on enhancing plant tolerance to high salinity, research targeting various ecotypes of Arabidopsis thaliana has been relatively limited. In this study, we aimed to identify salt-tolerant ecotypes among the diverse wild types of Arabidopsis thaliana and elucidate their characteristics at the molecular level. As a result, we found that Catania-1 (Ct-1), one of the ecotypes of Arabidopsis, exhibits greater salt tolerance compared to Col-0. Specifically, Ct-1 exhibited less damage from reactive oxygen species (ROS) than Col-0, despite not accumulating antioxidants like anthocyanins. Additionally, Ct-1 accumulated more potassium ions (K+) + ) in its shoots and roots than Col-0 under high salinity, which is crucial for water balance and preventing dehydration. In contrast, Ct-1 plants were observed to accumulate slightly lower levels of Na+ + than Col-0 in both root and shoot tissues, regardless of salt treatment. These findings suggest that Ct-1 plants achieve high salinity resistance not by extruding more Na+ + than Col-0, but rather by absorbing more K+ + or releasing less K+. + . Ct-1 exhibited higher nitrate (NO3-) 3) levels than Col-0 under high salinity conditions, which is associated with enhanced retention of K+ + ions. Additionally, genes involved in NO3-transport 3transport and uptake, such as NRT1.5 and NPF2.3, , showed higher transcript levels in Ct-1 compared to Col-0 when exposed to high salinity. However, Ct-1 did not demonstrate significantly greater resistance to osmotic stress compared to Col-0. These findings suggest that enhancing plant tolerance to salt stress could involve targeting the cellular processes responsible for regulating the transport of NO3-and 3and K+. + . Overall, our study sheds light on the mechanisms of plant salinity tolerance, emphasizing the importance of K+ + and NO3-transport 3transport in crop improvement and food security in regions facing salinity stress.

期刊论文 2024-11-01 DOI: 10.1016/j.jplph.2024.154321 ISSN: 0176-1617

Purpose The growing prevalence of soil salinity presents a significant threat to agriculture production on a global scale. Previous studies on salt stress, shown that silicon (Si) has an alleviating effect on plants exposed to stress. However, the results of the alleviating effect of Si on epigenetic level is not yet understood. In this study, we tried to understand how methylation mechanisms affect the alleviating effect of Si by testing on Arabidopsis epigenetic mutants (met1-7, drm2-2 and ros1-4). Methods The Col-0 and mutant plants were exposed to silicon and NaCl simultaneously and separately during two weeks. After that in order to see the physiological effects of Si on methylation mutants, which is known to be effective in antioxidant pathways of Col-0 plants, osmolyte accumulation and membrane damage were analyzed and to see the effects at the molecular level, the expression profiles of the CSD2, CAT3 and APX1 genes and global methylation changes were analyzed. Results As a general result of the osmolyte accumulation, ion leak, global methylation and gene expression analyzes performed in this study, it was determined that salt stress also had negative effects on Arabidopsis epigenetic mutants. It was concluded that the mitigating effect of Si on NaCl stress was most clearly determined as a result of global DNA methylation analyses. Conclusions It was found that treating Arabidopsis methylation mutants with Si during salt stress could improve the plants' ability to withstand salt. The results of this study provide information about the alleviating effect of Si based on methylation of separate and co-exposure to Si and NaCl, and also provide an epigenetic perspective to explain the mechanisms of Si improving plant durability under stress conditions.

期刊论文 2024-09-01 DOI: 10.1007/s42729-024-01848-0 ISSN: 0718-9508

NASA envisions a future where humans establish a thriving colony on the Moon by 2050. Plants will be essential for this endeavor, but little is known about their adaptation to extraterrestrial bodies. The capacity to grow plants in lunar regolith would represent a major step towards this goal by minimizing the reliance on resources transported from Earth. Recent studies reveal that Arabidopsis thaliana can germinate and grow on genuine lunar regolith as well as on lunar regolith simulant. However, plants arrest in vegetative development and activate a variety of stress response pathways, most notably the oxidative stress response. Telomeres are hotspots for oxidative damage in the genome and a marker of fitness in many organisms. Here we examine A. thaliana growth on a lunar regolith simulant and the impact of this resource on plant physiology and on telomere dynamics, telomerase enzyme activity and genome oxidation. We report that plants successfully set seed and generate a viable second plant generation if the lunar regolith simulant is pre-washed with an antioxidant cocktail. However, plants sustain a higher degree of genome oxidation and decreased biomass relative to conventional Earth soil cultivation. Moreover, telomerase activity substantially declines and telomeres shorten in plants grown in lunar regolith simulant, implying that genome integrity may not be sustainable over the long-term. Overcoming these challenges will be an important goal in ensuring success on the lunar frontier.

期刊论文 2024-02-16 DOI: 10.3389/fpls.2024.1351613 ISSN: 1664-462X

BackgroundSalinity is one of the most damaging abiotic stress factors in agriculture, it has a negative impact on crop growth, production, and development. It is predicted that salinity will become much more severe due to global climate change. Moreover, soil salinization affects three hectares of agricultural land every minute, increasing the salinity-affected area by 10% annually. The improvement of abiotic stress tolerance in plants was made possible by recent developments involving transgenes and the isolation of some abiotic stress tolerance genes.ObjectiveThe current study aimed to synthesize, clone and characterize two abiotic stress tolerance genes Lipid transfer protein (AtLTP1) of Arabidopsis thaliana and Stress-inducible transcription factor C-repeating binding factor (LeCBF1) of Solanum lycopersicum in Saccharomyces cerevisiae.Materials and methodsThe above-mentioned genes were synthesized, cloned into the pYES2 vector then transformed into Saccharomyces cerevisiae as a model eukaryotic system. The yeast growth was measured at (OD600 nm) in a spectrophotometer, RT-PCR expression analysis and estimation of intracellular proline content after exposure to different salt concentration were performed to characterize and evaluate the physiological roles of the selected genes in the yeast.Results and conclusionThe AtLTP1 and LeCBF1 genes were cloned into the pYES2 vector for Saccharomyces cerevisiae expression. After being exposed to increasing concentrations of sodium chloride (0, 1.7, 1.8, 1.9, 2.0, 2., 2.2, and 2.3 M) for 7 days, transgenic yeast cells were tested for their ability to survive under increasing salt-stress conditions and their growth response. A spectrophotometer was used to measure yeast growth at OD600nm. The growth of the control cells was dramatically hindered when the salt content was increased to 1.9 M NaCl. However, two transgenic yeast lines continued to grow well, at a slower rate, up to 2.3 M NaCl. The two genes' expression in transgenic yeast in response to salt stress was verified by RT-PCR. In this transgenic yeast, the precise primers of LeCBF1 and AtLTP1 amplified the genes successfully at 633 base pairs and 368 base pairs, respectively. The findings showed that increasing salinization level considerably boosted the transgenic yeast's intracellular proline accumulation. It was suggested that the possibility of utilizing these genes to produce salt tolerant transgenic plants, consequently, increase the amount of land that can be exploited for agriculture.

期刊论文 2024-01-01 DOI: 10.4103/epj.epj_132_23 ISSN: 1687-4315
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页