Herbicides are widely employed in agriculture to manage weeds and enhance crop yields, but their extensive use raises significant environmental and human health concerns. Exposure to herbicides can occur through multiple pathways, including ingesting contaminated food and water, inhaling airborne particles, and dermal contact during application. This review delves into the intricate dynamics of herbicide pollution in agriculture, examining their classification, modes of exposure, and impacts on plants, animals, and humans. This study also deals with the mechanisms by which herbicides contribute to adverse health outcomes, such as cellular damage and cancer. To address these risks, this review looks at more sustainable ways to manage weeds, focusing on practical and natural alternatives to chemical herbicides. These include traditional farming techniques, hands-on mechanical methods, and biological agents. Integrated weed management (IWM) is a holistic approach that combines these techniques to reduce herbicide resistance and environmental degradation. The natural alternative method is the use of bioherbicides, derived from live microorganisms or their metabolic byproducts known to stand out as eco-friendly and targeted solutions for weed control. This review emphasizes the need for sustainable practices to balance effective weed management and the preservation of environmental and human health. This paves the path for innovative and sustainable solutions to aquatic herbicide pollution through natural product-based interventions. This study emphasizes the importance of integrated techniques for achieving sustainable agriculture while minimizing environmental and health risks.
There is a rising concern regarding the accumulation of microplastics in the aquatic ecosystems. However, compared to the marine environment, the occurrence, transport, and diffusion of microplastics in freshwater sediment are still open questions. This paper summarizes and compares the methods used in previous studies and provides suggestions for sampling and analysis of microplastics in freshwater sediment. This paper also reviews the findings on microplastics in freshwater sediment, including abundance, morphological characteristics, polymer types, sources, and factors affecting the abundance of microplastics in freshwater sediment. The results show that microplastics are ubiquitous in the investigated sediment of rivers, lakes, and reservoirs, with an abundance of 2-5 orders of magnitude across different regions. Low microplastics concentration was observed in the Ciwalengke River with an average abundance of 30.3 +/- 15.9 items/kg. In particular, an extremely high abundance of microplastics was recorded in the urban recipient in Norway reaching 12,000-200,000 items/kg. Fibers with particle size less than 1 mm are the dominant shape for microplastics in freshwater sediment. In addition, the most frequently recorded colors and types are white/transparent, and PE/PS, respectively. Finally, we conclude that the consistency of morphological characteristics and components of microplastics between the beach or marine sediments and freshwater sediments may be an indicator of these interlinkages and source-pathways. Microplastics in freshwater sediment need further research and exploration to identify its spatial and temporal variations and driving force through further field sampling and implementation of standard and uniform analytical methodologies. (C) 2020 Elsevier B.V. All rights reserved.