Global warming as quantified by surface air temperature has been shown to be approximately linearly related to cumulative emissions of CO2. Here, a coupled state-of-the-art Earth system model with an interactive carbon cycle (BNU-ESM) was used to investigate whether this proportionality extends to the complex Earth system model and to examine the climate system responses to different emission pathways with a common emission budget of man-made CO2. These new simulations show that, relative to the lower emissions earlier and higher emissions later (LH) scenario, the amount of carbon sequestration by the land and the ocean will be larger and Earth will experience earlier warming of climate under the higher emissions earlier and lower emissions later (HL) scenario. The processes within the atmosphere, land, and cryosphere, which are highly sensitive to climate, show a relatively linear relationship to cumulative CO2 emissions and will attain similar states under both scenarios, mainly because of the negative feedback between the radiative forcing and ocean heat uptake. However, the processes with larger internal inertias depend on both the CO2 emissions scenarios and the emission budget, such as ocean warming and sea level rise.
Springtime near-surface soil thaw event is important for understanding the near-surface earth system. Previous researches based on both active and passive microwave remote sensing technologies have paid scant attention, especially at middle latitudes where the near-surface earth system has been changed substantially by climate change and human activities, and are characterized by more complex climate and land surface conditions than the permafrost areas. SSM/I brightness temperature and QuikSCAT Ku-band backscatter were applied in this study at a case study area of northern China and Mongolia in springtime of 2004. The soil freeze-thaw algorithm was employed for SSM/I data, and a random sampling technique was applied to determine the brightness temperature threshold for 37 GHz vertically polarized radiation: 258.2 and 260.1 K for the morning and evening satellite passes, respectively. A multi-step method was proposed for QuikSCAT Ku-band backscatter based on both field observed soil thaw events and the typical signature of radar backscatter time series when soil thaw event occurred. The method is mainly focuses on the estimated boundary of thaw events and detection of primary thaw date. The passive microwave remote sensing (SSM/I) based result had a good relationship with the near-surface soil temperature, while the active microwave remote sensing (QuikSCAT) based result had both relationships with temperature and soil moisture conditions. And also, QuikSCAT result identifies the geographical boundary of water-drove thaw event, which is crucial for understanding the different types of springtime near-surface soil thaw at middle latitudes.