共检索到 13

The development of biodegradable and recyclable food packaging materials derived from biomass is a promising solution to mitigate resource depletion and minimize ecological contamination. In this study, lignin nanoparticles (LNPs) were effectively produced from bamboo powder using an eco-friendly recyclable acid hydrotrope (RAH) strategy. A sustainable CA/LNPs nanocomposite film was then designed by incorporating these LNPs into a casein (CA) matrix. The LNPs served as nucleation templates, inducing ordered hydrogen bonding and close packing of the CA chains. The addition of 5 wt% LNPs significantly enhanced the mechanical properties of the film, with tensile strength enhanced to 21.42 MPa (219.7 % improvement) and elastic modulus rising to 354.88 MPa (220.3 % enhancement) compared to pure CA film. Notably, the resultant CA/LNPs nanocomposite film exhibited recyclable recasting characteristics, maintaining a reasonable mechanical strength even after three recasting cycles. The incorporation of LNPs also decreased the water solubility of the pure CA film from 31.65 % to 24.81 % indicating some interactions are taking place, while endowing the film with superior UV-blocking ability, achieving nearly complete absorption in the 200-400 nm range. Moreover, the inherent properties of LNPs imparted improved antibacterial and antioxidant activities to the CA/LNPs nanocomposite film. Owing to its comprehensive properties, the CA/LNPs nanocomposite film effectively extended the storage life of strawberries. A soil burial degradation test confirmed over 100 % mass loss within 45 days, highlighting excellent degradability of the films. Therefore, the simple extraction of LNPs and the easily recovery of p-TsOH provide significant promise and feasibility for extending the developed methodologies in this work to rapidly promote the produced films in fields such as degradable and packaging materials.

期刊论文 2025-11-01 DOI: 10.1016/j.foodhyd.2025.111413 ISSN: 0268-005X

Environmental issues caused by plastic films promote the development of biodegradability packaging materials. Copper ion-modified nanocellulose films were prepared through a one-pot reaction and systematically investigated their structural characteristics, thermal stability, mechanical properties, antibacterial activity, and biodegradability. The results indicate that the film prepared by co-soaking CNCs and copper in NaOH solution for 12 h has favorable performance. Introduction of copper ions as crosslinkers increases tensile strength of film from 36.8 MPa to 56.4 MPa and water contact angle of film from 46 degrees to 92 degrees. Copper coordination also endows the film excellent antibacterial activity, inhibiting growth of Escherichia coli and Staphylococcus aureus. Moreover, biodegradability tests indicate that although the introduction of copper ions slightly reduce biodegradation rate of films, they could still be decomposed significantly within four weeks as burying in soil. This simple process for preparing cellulosic films with water resistance, thermal stable, antibacterial ability, and biodegradable shows potential application in flexible packaging film.

期刊论文 2025-07-01 DOI: 10.1016/j.indcrop.2025.121036 ISSN: 0926-6690

Natural paper-based materials are desirable candidate materials for disposable hygiene products due to their environmental sustainability, cost-effectiveness, and biodegradability. However, their practical application is often hindered by poor water stability and limited functional properties. In this study, we developed a wet-laid web formation and hot-pressing technique to produce porous, layered paper-based materials with high porosity, flexibility, water stability, and antibacterial properties. These materials were created using naturally derived components, including kapok fiber, carboxymethyl cellulose (CMC), and cationic starch (CS). The synergistic interaction between CMC and CS significantly enhances the mechanical properties and water stability, achieving a 146.09 % improvement compared to materials without CMC/CS. The resulting paper-based materials also exhibit water stability for up to 30 days. Kapok fibers contribute excellent antimicrobial properties, with >95 % inhibition of both Escherichia coli and Staphylococcus aureus. Furthermore, the materials are biodegradable in soil, completely degrading after 60 days. This study provides novel insights into the valorization of kapok fiber and presents a sustainable approach to producing high-performance paper-based materials for disposable hygiene products applications.

期刊论文 2025-06-01 DOI: 10.1016/j.ijbiomac.2025.144112 ISSN: 0141-8130

Rice (Oryza sativa L.), a primary food source for a substantial portion of the world's population, faces a serious threat from bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo), leading to considerable yield reductions. The excessive use of synthetic pesticides not only affects soil health but also disrupts the community of organisms living in the soil. While some pesticides degrade quickly, others persist, leading to long-term environmental damage. To address these challenges, the aqueous extract of Terminalia arjuna (T. arjuna), was investigated as a sustainable alternative for controlling Xoo. The extract was prepared using a Soxhlet apparatus, and its antibacterial activity was assessed via zone of inhibition assays and bacterial growth inhibition studies. The results revealed significant antibacterial activity, with inhibition zones of 9.1 +/- 0.76 mm at 25 mu g/ml, 14.16 +/- 1.04 mm at 50 mu g/ml, and 15.5 +/- 1.31 mm at 100 mu g/ml. Furthermore, the antibacterial mechanism of the T. arjuna extract was investigated using computational approaches. For this molecular docking of CbsA, LipA, T3SEs, PDF, and Ddl was conducted with the phytochemicals of T. arjuna. Further molecular dynamics simulation analysis shows that 3-Hydroxyspirost-8-en-11-one can inhibit Ddl and CbsA, while 9-Oximino-2,7-diethoxyfluorene and 2-Naphthalene methanol can interact with T3SEs and PDF, respectively resulting inhibition of growth of Xoo. These findings highlight T. arjuna's potential as an eco-friendly, natural pesticide to combat Xoo, offering a sustainable solution to reduce the reliance on synthetic pesticides and their detrimental environmental impact. Further field studies are needed to confirm these results.

期刊论文 2025-05-13 DOI: 10.1007/s10658-025-03063-8 ISSN: 0929-1873

Preparation and characterization of biopolymer-based packaging materials have significantly gained importance because of sustainability, biodegradability, and eco-friendly nature. In this study, novel wheat gluten (WG)/cloisite 30B (C30B) organoclay-based bionanocomposite (BNC) films were prepared by solution casting method at various C30B concentrations (5%, 10%, and 15%). X-ray diffraction and field emission scanning electron microscopy revealed intercalation/exfoliation of C30B sheets into the WG matrix. WG-C30B 10% film was thermostable. It showed low surface roughness along with higher water barrier properties and surface hydrophobicity. The tensile strength values of WG and WG-C30B 10% films were found to be 0.7 +/- 0.02 and 1.11 +/- 0.01, respectively, indicating improvement in mechanical properties. WG-C30B 10% film demonstrated antibacterial activity against both Staphylococcus aureus and Salmonella enterica. Shelf life of green grapes was monitored under different conditions: 4 degrees C, ambient conditions, and 42 degrees C. WG-C30B 10% film proved effective in extending shelf life up to 18 days under ambient conditions. More than 50% of the bionanocomposite films were degraded in agricultural soil within 2 weeks, while completely degraded in sewage sludge soil after a few days. WG-C30B 10% film appeared to be promising regarding the demonstrated physico-chemical and antibacterial properties. This report would be useful in preparing biodegradable biopolymer-based packaging materials.

期刊论文 2025-04-15 DOI: 10.1007/s13399-025-06846-5 ISSN: 2190-6815

Herein, we synthesized 34 novel tryptanthrin derivatives, among which T7NHCO-series compounds showed great antibacterial activity againstXanthomonas axonopodis pv. citri,Pseudomonas syringae pv. actinidiae, andRalstonia solanacearum with EC50 values ranging from 0.26 to 0.56 mu g/mL. Meanwhile, these compounds exhibited low cytotoxicity against HEK-293. Additionally, compound T7NHCO can inhibit biofilm formation, damage bacterial morphology, downregulate the expression of bacterial chemotaxis-related proteins, cause bacterial necrosis, and effectively control citrus and kiwifruit canker (the curative and protective efficiency is 79.35 and 88.31%, respectively) diseases. However, compound T7NHCO exhibited a significant phytotoxicity to tobacco. Subsequently, based on the characteristic of tobacco wilt disease being prone to outbreak in weakly acidic soil conditions, we introduced the pH-responsive ZIF-8 drug delivery system. Fortunately, T7NHCO@ZIF-8 nanoparticles exhibited low phytotoxicity and noticeable activity against tobacco wilt disease. Above all, T7NHCO@ZIF-8 nanoparticles may be a promising green lead agent against plant bacterial diseases.

期刊论文 2025-03-12 DOI: 10.1021/acs.jafc.4c12641 ISSN: 0021-8561

Fifteen new aliphatic metabolites, 2-methylpyrimidin-4(3H)-ones (1,2), 2-methoxy-2-methyl-1,2-dihydro-3Hpyrrol-3-ones (4a/4b, 5a/5b), butyrolactones (6-9), and aliphatic metabolites (16-20) as well as known pyridin2(1H)-one (3) and butyrolactone analogues (10-15) were obtained from the fermentation broth of Streptomyces antifungus isolated from the forest soil sample collected in Tengchong, China. Pyrimidin-4(3H)-one derivatives (1, 2) with an individual 2-methylpyrimidin-4(3H)-one skeleton is a kind of rarely reported compound and were firstly obtained from natural source. The structures of the new metabolites were elucidated by comprehensive spectroscopic analysis including data from experimental and calculated ECD spectra as well as Mosher's reagent derivative method. Compounds 1, 2, 18, and 19 exhibited optimal activity against Staphylococcus aureus with MIC values ranged from 12.5 to 50 mu g/mL. Further investigation revealed that 1 effectively inhibited biofilm formation and destroyed the preformed biofilm of S. aureus through oxidative damage, thereby exerting antibacterial effect.

期刊论文 2025-03-01 DOI: 10.1016/j.fitote.2025.106382 ISSN: 0367-326X

Seaweeds are a rich source of various bioactive compounds and metabolites. In this study, sulfated polysaccharide, kappa-carrageenan has been isolated from red algae, Hypnea valentiae, and developed biodegradable film with the addition of plasticizers, sorbitol and polyethylene glycol (PEG 4000) at varying concentrations of carrageenan (1%, 5% and 7% Carr). The biodegradable film exhibited excellent mechanical properties with increasing carrageenan concentration. The 5% Carr film showed improved water barrier properties, high water contact angle (hydrophobicity), high tensile strength (11.38 MPa) and elongation at break (23.27%) which imparts rigidity and flexibility to the film. The results of FTIR and SEM images revealed that the plasticizers and polysaccharides have been blended properly. Since seaweeds are natural antioxidants the kappa-carrageenan based biodegradable films displayed strong radical scavenging activity. The 7% Carr film exhibited 86% of radical scavenging activity in ABTS assay and 5% Carr showed 80% of scavenging activity. The biodegradable films displayed efficient antibacterial activity against gram-negative bacteria, E. coli and gram-positive bacteria, B. subtilis. The developed films exhibited excellent biodegradability, the films samples degraded completely within 84 days of soil burial. The kappa-carrageenan based biodegradable film (5% Carr) from red algae, H. valentiae better serves as a versatile food packaging material.

期刊论文 2024-12-15 DOI: 10.1007/s13197-024-06147-1 ISSN: 0022-1155

Poly(butylene succinate) (PBS)-based nanocomposites, reinforced and toughened with ZnO-coated multi-walled carbon nano-tubes (MWCNT-ZnO), demonstrate significantly enhanced properties, making them ideal for potential applied in food packaging applications. This study explores the effects of varying proportions of MWCNT-ZnO on the overall characteristics of these composites. The addition of 0.1 parts per hundred (phr) MWCNT-ZnO optimizes the nanocomposites' mechanical properties, crystallinity, melting temperature, thermal stability, and barrier performance. Specifically, the composite exhibits a 22% increase in tensile strength, a 28.4% rise in yield strength, and a remarkable 95.7% enhancement in the material's elongation at break, compared to the pure PBS matrix. Moreover, these nanocomposites exhibit excellent antibacterial properties, crucial for food preservation and safety. The soil burial test indicates that, except for the addition of 0.1phr which is lower than pure PBS, the biodegradation rate increases with the increasing addition of MWCNT-ZnO. This further suggests that a low nanoparticle filler content can enhance structural compactness, thereby improving the mechanical stability. The study also reveals notable preservation benefits for vegetables. When used for beef packaging, this composite material successfully extends the meat's freshness period, substantially curtails bacterial proliferation, and ensures the beef remains within safe consumption parameters. The combination of enhanced mechanical, thermal, barrier, and antibacterial properties makes PBS/MWCNT-ZnO nanocomposites promising candidates for sustainable and efficient food packaging materials.

期刊论文 2024-09-01 DOI: 10.1007/s10965-024-04125-x ISSN: 1022-9760

Nanotechnology offers an innovative application as an eco-friendly food packaging film fabricated along with a degradable active mixture (AM). The AM is an assortment of alloyed metal oxide nanoparticles (Ag-ZnO), citron powder (AA), and Curcuma peel powder (CPP). Alloyed nanoparticles (NPs) were observed to exhibit a hexagonal structure from the experimental X-ray diffraction. Compositional and morphological study of the NPs (22.69 nm) and AM (32 nm) was done using energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and zeta- potential was observed to be -14.7 mV, indicating the stability of NPs. The prepared film was observed to be more effective with antibacterial analysis against Escherichia coli, exhibiting 72% of inhibition and antioxidant activity with IC50: 51.56% using the 2,2 diphenyl-1-picrylhydrazyl (DPPH) assay. Film 1, Film 2, Film 3, and Film 4 were fabricated with the AM and observed to be perfectly encapsulated by PVA using XRD. FESEM images of the film exhibit the aggregation of NPs with biocomposites in perfect distribution. The mechanical properties such as Young's modulus, elongation at break, tensile strength, and ultimate tensile strength (UTS- 5.37 MPa) were experimented for the films. The degradation rate was observed to be 6.12% for film 1 using the soil burial method. The study emphasizes that NPs along with biocomposite upgrade the sustainability of the packaging film with improved mechanical and physicochemical properties. The synthesized film with biomaterials could be used as a green food package to store fruits, vegetables, and sweets in the food industry.

期刊论文 2024-05-31 DOI: 10.1021/acsabm.4c00225 ISSN: 2576-6422
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共13条,2页