The development of biodegradable and recyclable food packaging materials derived from biomass is a promising solution to mitigate resource depletion and minimize ecological contamination. In this study, lignin nanoparticles (LNPs) were effectively produced from bamboo powder using an eco-friendly recyclable acid hydrotrope (RAH) strategy. A sustainable CA/LNPs nanocomposite film was then designed by incorporating these LNPs into a casein (CA) matrix. The LNPs served as nucleation templates, inducing ordered hydrogen bonding and close packing of the CA chains. The addition of 5 wt% LNPs significantly enhanced the mechanical properties of the film, with tensile strength enhanced to 21.42 MPa (219.7 % improvement) and elastic modulus rising to 354.88 MPa (220.3 % enhancement) compared to pure CA film. Notably, the resultant CA/LNPs nanocomposite film exhibited recyclable recasting characteristics, maintaining a reasonable mechanical strength even after three recasting cycles. The incorporation of LNPs also decreased the water solubility of the pure CA film from 31.65 % to 24.81 % indicating some interactions are taking place, while endowing the film with superior UV-blocking ability, achieving nearly complete absorption in the 200-400 nm range. Moreover, the inherent properties of LNPs imparted improved antibacterial and antioxidant activities to the CA/LNPs nanocomposite film. Owing to its comprehensive properties, the CA/LNPs nanocomposite film effectively extended the storage life of strawberries. A soil burial degradation test confirmed over 100 % mass loss within 45 days, highlighting excellent degradability of the films. Therefore, the simple extraction of LNPs and the easily recovery of p-TsOH provide significant promise and feasibility for extending the developed methodologies in this work to rapidly promote the produced films in fields such as degradable and packaging materials.
Due to the serious environmental pollution generated by plastic packaging, chitosan (CS)-based biodegradable films are gradually gaining popularity. However, the limited antioxidant and bacteriostatic capabilities of CS, the poor mechanical properties and water resistance of pure CS films limit their widespread adoption in food packaging. In this study, new multifunctional bioactive packaging films containing monosaccharide-modified CS and polyvinyl alcohol (PVA) were prepared to address the shortcomings of pure CS films. Initially, Maillard reaction (MR) products were prepared by conjugating chitosan with galactose/mannose (CG/CM). The successful preparation of CG/CM was confirmed using UV spectroscopy, fluorescence spectroscopy, fourier transform infrared spectroscopy (FTIR) and high-performance gel permeation chromatography (HPGPC). At an 8 mg/mL concentration, the DPPH radical scavenging activities of CM and CG were 5 and 15 times higher than that of CS, respectively. At the maximum concentration of 200 mu g/mL, both CM and CG exhibited greater inhibitory effects on the growth of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli, compared to CS. Additionally, CM and CG demonstrated significantly stronger protection against oxidative damage in Vero cells than CS. These results indicate that CG and CM possess superior antioxidant and antibacterial capabilities in comparison to CS. Then, the effects of the MR on the structures and functional properties of chitosan-based films were extensively examined. Compared with pure CS films, the MR in the CG/CM films significantly changed the film microstructure, enhanced the UV-barrier property and water resistance, and only slightly reduced thermal stability. The MR reduced the tensile strength but increased the elongation at break. Meanwhile, the composite films hold good soil degradation ability. Moreover, the CG/CM films possessed excellent antioxidant and antibacterial properties and demonstrated superior fresh-keeping capacity in the preservation of strawberries and cherry tomatoes (effectively prolonged for at least 2 days or 3-6 days). Our study indicates that CG/CM films can be used as a promising biodegradable antioxidant and antibacterial biomaterial for food packaging.
Environmental issues caused by plastic films promote the development of biodegradability packaging materials. Copper ion-modified nanocellulose films were prepared through a one-pot reaction and systematically investigated their structural characteristics, thermal stability, mechanical properties, antibacterial activity, and biodegradability. The results indicate that the film prepared by co-soaking CNCs and copper in NaOH solution for 12 h has favorable performance. Introduction of copper ions as crosslinkers increases tensile strength of film from 36.8 MPa to 56.4 MPa and water contact angle of film from 46 degrees to 92 degrees. Copper coordination also endows the film excellent antibacterial activity, inhibiting growth of Escherichia coli and Staphylococcus aureus. Moreover, biodegradability tests indicate that although the introduction of copper ions slightly reduce biodegradation rate of films, they could still be decomposed significantly within four weeks as burying in soil. This simple process for preparing cellulosic films with water resistance, thermal stable, antibacterial ability, and biodegradable shows potential application in flexible packaging film.
Developing environmentally sustainable biodegradable multifunctional bio-composite films is an effective strategy for ensuring food chain security. This study initially prepared inclusion complexes (HP-(3-CD@EGCG) of Hydroxypropyl-(3-cyclodextrin (HP-(3-CD) and EGCG to ameliorate the stability of EGCG. Then HP-(3-CD@EGCG and different ratios of lignin were incorporated into gelatin solution through cross-linking polymerization to prepare an antioxidant, antibacterial and biodegradable composite film (HP-(3-CD@EGCG/Lignin/Gelatin). The results illustrated that HP-(3-CD crosslinked with EGCG and the encapsulation rate of EGCG reached 82.26%, and lignin increased the comprehensive characteristics of the gelatin-based composite films. The hydrophobicity of the composite films increased with increasing lignin concentration, reaching a water contact angle of 117.33 degrees; Furthermore, the mechanical characteristics and UV-light/water/oxygen barrier capacity also increased significantly. The composite films showed excellent antioxidant and antimicrobial properties, which also verified in the preservation of tomatoes and oranges, extending the shelf life of the fruit. It is worth mentioning that lignin has no effect on the biodegradability of the composite film, and the degradation rate in the soil reached 80% on the 10th day. In summary, biodegradable multifunctional environmentally friendly composite films based on gelatin and loaded with lignin and HP-(3-CD@EGCG inclusion complexes are anticipated to be applied in fruit and vegetable preservation.
Natural paper-based materials are desirable candidate materials for disposable hygiene products due to their environmental sustainability, cost-effectiveness, and biodegradability. However, their practical application is often hindered by poor water stability and limited functional properties. In this study, we developed a wet-laid web formation and hot-pressing technique to produce porous, layered paper-based materials with high porosity, flexibility, water stability, and antibacterial properties. These materials were created using naturally derived components, including kapok fiber, carboxymethyl cellulose (CMC), and cationic starch (CS). The synergistic interaction between CMC and CS significantly enhances the mechanical properties and water stability, achieving a 146.09 % improvement compared to materials without CMC/CS. The resulting paper-based materials also exhibit water stability for up to 30 days. Kapok fibers contribute excellent antimicrobial properties, with >95 % inhibition of both Escherichia coli and Staphylococcus aureus. Furthermore, the materials are biodegradable in soil, completely degrading after 60 days. This study provides novel insights into the valorization of kapok fiber and presents a sustainable approach to producing high-performance paper-based materials for disposable hygiene products applications.
Rice (Oryza sativa L.), a primary food source for a substantial portion of the world's population, faces a serious threat from bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo), leading to considerable yield reductions. The excessive use of synthetic pesticides not only affects soil health but also disrupts the community of organisms living in the soil. While some pesticides degrade quickly, others persist, leading to long-term environmental damage. To address these challenges, the aqueous extract of Terminalia arjuna (T. arjuna), was investigated as a sustainable alternative for controlling Xoo. The extract was prepared using a Soxhlet apparatus, and its antibacterial activity was assessed via zone of inhibition assays and bacterial growth inhibition studies. The results revealed significant antibacterial activity, with inhibition zones of 9.1 +/- 0.76 mm at 25 mu g/ml, 14.16 +/- 1.04 mm at 50 mu g/ml, and 15.5 +/- 1.31 mm at 100 mu g/ml. Furthermore, the antibacterial mechanism of the T. arjuna extract was investigated using computational approaches. For this molecular docking of CbsA, LipA, T3SEs, PDF, and Ddl was conducted with the phytochemicals of T. arjuna. Further molecular dynamics simulation analysis shows that 3-Hydroxyspirost-8-en-11-one can inhibit Ddl and CbsA, while 9-Oximino-2,7-diethoxyfluorene and 2-Naphthalene methanol can interact with T3SEs and PDF, respectively resulting inhibition of growth of Xoo. These findings highlight T. arjuna's potential as an eco-friendly, natural pesticide to combat Xoo, offering a sustainable solution to reduce the reliance on synthetic pesticides and their detrimental environmental impact. Further field studies are needed to confirm these results.
Development of bio-based active packaging systems for lipid stabilization presents critical importance in preserving lipid integrity and ensuring food safety. Zein/citric acid (Z/CA) composite films containing grape seed ethanol extract (GSEE) (0-8% w/w) were prepared by the solvent casting method. The structural, functional, and environmental properties of the films, including physical and chemical properties, mechanical properties, antioxidant capacity, antibacterial activity, oxidation inhibition effect, and biodegradability, were comprehensively characterized and evaluated. Progressive GSEE enrichment significantly enhanced film thickness (p < 0.05), hydrophobicity, and total phenolic content, while increasing water vapor permeability by 61.29%. Antioxidant capacity demonstrated radical scavenging enhancements of 83.75% (DPPH) and 89.33% (ABTS) at maximal GSEE loading compared to control films. Mechanical parameters exhibited inverse proportionality to GSEE concentration, with tensile strength and elongation at break decreasing by 28.13% and 59.43%, respectively. SEM microstructural analysis revealed concentration-dependent increases in surface asperity and cross-sectional phase heterogeneity. Antimicrobial assays demonstrated selective bacteriostatic effects against Gram-negative pathogens. Notably, the composite film containing 6 wt% GSEE had a remarkable restraining effect on the oxidation of lard. The soil degradation experiment has confirmed that the Z/CA/GSEE composite film can achieve obvious degradation within 28 days. The above results indicate that the Z/CA/GSEE composite material emerges as a promising candidate for sustainable active food packaging applications.
Preparation and characterization of biopolymer-based packaging materials have significantly gained importance because of sustainability, biodegradability, and eco-friendly nature. In this study, novel wheat gluten (WG)/cloisite 30B (C30B) organoclay-based bionanocomposite (BNC) films were prepared by solution casting method at various C30B concentrations (5%, 10%, and 15%). X-ray diffraction and field emission scanning electron microscopy revealed intercalation/exfoliation of C30B sheets into the WG matrix. WG-C30B 10% film was thermostable. It showed low surface roughness along with higher water barrier properties and surface hydrophobicity. The tensile strength values of WG and WG-C30B 10% films were found to be 0.7 +/- 0.02 and 1.11 +/- 0.01, respectively, indicating improvement in mechanical properties. WG-C30B 10% film demonstrated antibacterial activity against both Staphylococcus aureus and Salmonella enterica. Shelf life of green grapes was monitored under different conditions: 4 degrees C, ambient conditions, and 42 degrees C. WG-C30B 10% film proved effective in extending shelf life up to 18 days under ambient conditions. More than 50% of the bionanocomposite films were degraded in agricultural soil within 2 weeks, while completely degraded in sewage sludge soil after a few days. WG-C30B 10% film appeared to be promising regarding the demonstrated physico-chemical and antibacterial properties. This report would be useful in preparing biodegradable biopolymer-based packaging materials.
This study aims to develop an eco-friendly active packaging film to preserve perishable food. The film was prepared using natural polymers like sodium alginate and gelatin. Further, Clove oil was added to these films to improve their antioxidant and antimicrobial properties. The films' transmission was low, i.e., similar to 18.79% in 315-400 nm, lower, i.e., 14.41% in the UV region of 200-400 nm, and lowest, i.e., 12.21% in 200-280 nm with a band gap of similar to 3.52 eV, showing the effectiveness of films in shielding UV light. The films were hydrophilic and showed a low water vapor transmission rate. The packaging films showed thermal stability and reduced swelling. Freeze-thaw and high-temperature annealing significantly improved the film's mechanical properties (Y = 10.39 MPa and sigma = 23.37 MPa). The Chorioallantoic Membrane (CAM) assay in the chick model showed the films' biocompatibility. After 28 days, the films were completely biodegradable in soil, providing a sustainable solution for food packaging. Active packaging film showed significant antibacterial properties against Gram-positive S. aureus (colony-forming unit (CFU) reduced from 92 +/- 4.2 to 3 +/- 0.2, i.e., 96.74 +/- 5.13% inhibition) and Gram-negative E. coli (colony-forming unit reduced from 106 +/- 6 to 95 +/- 4.11, i.e., 96.13 +/- 3.41%). These films showed significant antioxidant activity and effectively delayed the decay of bananas (Musa acuminata), making them a promising solution for food packaging with excellent UV blocking, antimicrobial, and antioxidant properties. [GRAPHICS] .
Bio-active packaging films from cellulose acetate incorporated with cypress essential oil (Cyp) have been developed. Thus, cellulose acetate (CA), which is a biodegradable and renewable polymer has been used as an alternative to petroleum-based polymers. Cellulose acetate films were prepared via a solvent casting method incorporating 0, 10, 30, and 60% (w/w) of Cyp. The purpose was to evaluate the possible changes caused by the Cyp on the properties of the packaging films. Different methods and technics have been used to characterize these films. The antibacterial and antioxidant properties of the films were also analyzed. FTIR and XRD analysis indicated that Cyp was homogenously distributed in the films. Meanwhile, TGA analysis demonstrated that the addition of Cyp had an impact on thermal-oxidative properties of the films. The CA/Cyp films showed excellent biodegradability in soil after 60 days, with a percentage loss of 87.07% by mass, and improved mechanical properties with tensile strength and elongation-at-break of 8.1 +/- 0.2 MPa and 16.6 +/- 0.2%, respectively. Water absorption and water solubility values for CA/Cyp films ranged from 76.62 +/- 0.91% to 21.95 +/- 0.57% and from 1.29 +/- 0.35 to undetectable levels, respectively. The results displayed that antibacterial activity against Escherichia coli and Staphylococcus aureus increased as the percentage of Cyp increased in the cellulose acetate films. Moreover, the free radical scavenging activity of cellulose acetate films was improved by increasing the Cyp concentration. These results indicate that cellulose acetate films containing a low-cost essential oil like Cyp have potential for use as active packaging for foods.