Future anthropogenic land use change (LUC) may alter atmospheric carbonaceous aerosol (black carbon and organic aerosol) burden by perturbing biogenic and fire emissions. However, there has been little investigation of this effect. We examine the global evolution of future carbonaceous aerosol under the Shared Socioeconomic Pathways projected reforestation and deforestation scenarios using the CESM2 model from present-day to 2100. Compared to present-day, the change in future biogenic volatile organic compounds emission follows changes in forest coverage, while fire emissions decrease in both projections, driven by trends in deforestation fires. The associated carbonaceous aerosol burden change produces moderate aerosol direct radiative forcing (-0.021 to +0.034 W/m2) and modest mean reduction in PM2.5 exposure (-0.11 mu g/m3 to -0.23 mu g/m3) in both scenarios. We find that future anthropogenic LUC may be more important in determining atmospheric carbonaceous aerosol burden than direct anthropogenic emissions, highlighting the importance of further constraining the impact of LUC.
Pollutant emissions in China have significantly decreased over the past decade and are expected to continue declining in the future. Aerosols, as important pollutants and short-lived climate forcing agents, have significant but currently unclear climate impacts in East Asia as their concentrations decrease until mid-century. Here, we employ a well-developed regional climate model RegCM4 combined with future pollutant emission inventories, which are more representative of China to investigate changes in the concentrations and climate effects of major anthropogenic aerosols in East Asia under six different emission reduction scenarios (1.5 degrees C goals, Neutral-goals, 2 degrees C -goals, NDC-goals, Current-goals, and Baseline). By the 2060s, aerosol surface concentrations under these scenarios are projected to decrease by 89%, 87%, 84%, 73%, 65%, and 21%, respectively, compared with those in 2010-2020. Aerosol climate effect changes are associated with its loadings but not in a linear manner. The average effective radiative forcing at the surface in East Asia induced by aerosol-radiation-cloud interactions will diminish by 24% +/- 13% by the 2030s and 35% +/- 13% by the 2060s. These alternations caused by aerosol reductions lead to increases in near-surface temperatures and precipitations. Specifically, aerosol-induced temperature and precipitation responses in East Asia are estimated to change by -78% to -20% and -69% to 77%, respectively, under goals with different emission scenarios in the 2060s compared to 2010-2020. Therefore, the significant climate effects resulting from substantial reductions in anthropogenic aerosols need to be fully considered in the pathway toward carbon neutrality.
Air quality in Bangladesh has depreciated over the years owing to substantial local and regional aerosol emissions. This study investigates the impact of anthropogenic aerosol emissions, aerosol radiative forcing, and socioeconomic factors on aerosol optical depth (AOD) over Bangladesh. The research focuses on the capital city Dhaka and the coastal island Bhola, using data from the ground-based AERONET, MODIS satellite, and MERRA-2 reanalysis model. AOD exhibited increasing trends over Bangladesh (0.004-0.010/years) and showed significant annual cycles. Northwestern regions of the country experienced extremely high concentrations of anthropogenic black carbon (BC) and organic carbon (OC) aerosols, whereas the central regions exhibited elevated anthropogenic SO2 and SO4 concentrations. The dominance of anthropogenic aerosols (SO4, BC, and OC) over Dhaka (similar to 75%) and natural aerosols (sea salt and dust) over Bhola (similar to 63%) were calculated. SO4 aerosol was the primary driving force over Dhaka contributing 47.60% of the total AOD, while sea salt aerosol was the dominant species (45.78%) over Bhola. High aerosol radiative forcing at the atmosphere (ARF(ATM)) values were calculated for both Dhaka and Bhola. Average heating rate (HR) at Dhaka was 2.05 +/- 0.75 K day(-1), and at Bhola was 1.54 +/- 0.58 K day(-1) indicating the presence of light-absorbing aerosols over Bangladesh. All the socioeconomic factors were positively correlated with AOD except population growth and agriculture land indicating the substantial impact of socioeconomic development on AOD. The findings of this study will have notable influences on long-term air quality management in Bangladesh as well as in Southeast Asia.
Rationale. Glaciers in the Tibetan Plateau (TP), especially in the Himalayas, are retreating rapidly due to rising air temperature and increasing anthropogenic emissions from nearby regions. Traditionally, pollutants deposited on the glaciers have been assumed to originate from long-range transport from its outside. Methodology. This study investigated the concentrations of black carbon (BC) and major ions in snowpit samples collected from two glaciers in the south-eastern TP (Demula and Palongzangbu) and one glacier in the west Himalayas (Jiemayangzong). The radiative forcing of BC was calculated based on BC concentration and glacier characteristics. Results. The results revealed that the BC/Ca2+ concentration ratio in snowpit samples from Palongzangbu, located near residential villages, is similar to 2.05 times higher than that of Demula, which is mainly influenced by long-range transported pollutants. Furthermore, on Jiemayangzong glacier, snowpit samples collected with 100-m vertical resolution exhibited that BC-induced radiative forcings at low altitude are similar to 2.37 +/- 0.16 times greater than those at high altitude. Discussion. These findings demonstrated that in addition to long-range transport, emissions from local residents also make substantial contributions to BC and certain major ions (e.g. SO42-). To accurately assess the sources and radiative forcing of BC and other light-absorbing impurities on glaciers of the TP, it is necessary to consider the impact of local populations and altitude-dependent variations.
Vehicle -emitted fine particulate matter (PM 2.5 ) has been associated with significant health outcomes and environmental risks. This study estimates the contribution of traffic -related exhaust emissions (TREE) to observed PM 2.5 using a novel factorization framework. Specifically, co -measured nitrogen oxides (NO x ) concentrations served as a marker of vehicle -tailpipe emissions and were integrated into the optimization of a Non -negative Matrix Factorization (NMF) analysis to guide the factor extraction. The novel TREE-NMF approach was applied to long-term (2012 - 2019) PM 2.5 observations from air quality monitoring (AQM) stations in two urban areas. The extracted TREE factor was evaluated against co -measured black carbon (BC) and PM 2.5 species to which the TREE-NMF optimization was blind. The contribution of the TREE factor to the observed PM 2.5 concentrations at an AQM station from the first location showed close agreement ( R 2 = 0 .79) with monitored BC data. In the second location, a comparison of the extracted TREE factor with measurements at a nearby Surface PARTiculate mAtter Network (SPARTAN) station revealed moderate correlations with PM 2.5 species commonly associated with fuel combustion, and a good linear regression fit with measured equivalent BC concentrations. The estimated concentrations of the TREE factor at the second location accounted for 7 - 11 % of the observed PM 2.5 in the AQM stations. Moreover, analysis of specific days known to be characterized by little traffic emissions suggested that approximately 60 - 78 % of the traffic -related PM 2.5 concentrations could be attributed to particulate traffic -exhaust emissions. The methodology applied in this study holds great potential in areas with limited monitoring of PM 2.5 speciation, in particular BC, and its results could be valuable for both future environmental health research, regional radiative forcing estimates, and promulgation of tailored regulations for traffic -related air pollution abatement.
Investigation of mercury (Hg) from atmospheric precipitation is important for evaluating its ecological impacts and developing mitigation strategies. Western China, which includes the Tibetan Plateau and the Xinjiang Uyghur Autonomous Region, is one of the most remote region in the world and is understudied in regards to Hg precipitation. Here we report seesaw-like patterns in spatial variations of precipitation Hg in Western China, based on Hg speciation measurements at nine stations over this remote region. The Hg fraction analyzed included total Hg (HgT), particulate-bound Hg (HgP) and methylmercury (MeHg). Spatially, HgT concentrations and percentage of HgP in precipitation were markedly greater in the westerlies domain than those in the monsoon domain, but the higher wet HgT flux, MeHg concentration and percentage of MeHg in precipitation mainly occurred in the monsoon domain. Similar spatial patterns of wet Hg deposition were also obtained from GEOSChem modeling. We show that the disparity of anthropogenic and natural drivers between the two domains are mainly responsible for this seesaw-like spatial patterns of precipitation Hg in Western China. Our study may provide a baseline for assessment of environmental Hg pollution in Western China, and subsequently assist in protecting this remote alpine ecosystem.
Remote region is normally considered a receptor of long-range transported pollutants. Monitoring stations are important platforms for investigating the atmospheric environment of remote regions. However, the potential contribution of very local sources around these stations may produce important influences on its atmospheric environment, which is still barely studied. In this study, major ions of precipitation were investigated simultaneously at a typical remote station (Nam Co station) and other sites nearby on the Tibetan Plateau (TP) - the so-called The Third Pole in the world. The results showed that despite low values compared to those of other remote regions, the concentrations of major ions in precipitation of Nam Co station (e.g., Ca2+: 32.71 mu eq/L; SO42- : 1.73 mu eq/L) were significantly higher than those at a site around 2.2 Km away ( Ca2+: 11.47 mu eq/L; SO42- : 0.64 mu eq/L). This provides direct evidence that atmospheric environment at Nam Co station is significantly influenced by mineral dust and pollutants emitted from surface soil and anthropogenic pollutants of the station itself. Therefore, numbers of other related data reported on the station are influenced. For example, the aerosol concentration and some anthropogenic pollutants reported on Nam Co station should be overestimated. Meanwhile, it is suggested that it is cautious in selecting sites for monitoring the atmospheric environment at the remote station to reduce the potential influence from local sources.
The NCAR Community Earth System Model is used to study the influences of anthropogenic aerosols on the Indian summer monsoon (ISM). We perform two sets of 30-year simulations subject to the prescribed perpetual SST annual cycle. One is triggered by the year 2000 climatology anthropogenic aerosol emissions data over the Indian Peninsula (referred to as AERO), and the other one is by the year 1850 (referred to as CTL). Only aerosol direct effects are included in the experiments. In our results, the transition of ISM in AERO relative to the CTL exhibits a similar ensemble-mean onset date with a larger spread, and more abrupt onset in late spring, and an earlier but more gradual withdrawal in early fall. The aerosols-induced circulation changes feature an upward motion over the northeastern Indian Peninsula and strengthened anticyclonic circulation over the Arabia Sea in the pre-monsoon season, and a northward shift of monsoon flow in the developed monsoon period along with strengthened local meridional circulation over northern India. The strengthened anticyclonic circulation over Arabia Sea caused a 16% increase in natural dust transport from the Middle East in the pre-monsoon season. The elevated aerosol heating over Tibet causes stronger ascending motion in the pre-monsoon period that leads to earlier and more abrupt ISM onset. The earlier monsoon withdrawal is attributed to the aerosol-induced anticyclonic flow within 10 & DEG;-25 & DEG;N and cyclonic flow within 0 & DEG;-10 & DEG;N over eastern India and Bay of Bengal that resemble the ISM seasonal transition in September.
Aerosol mixtures, which are still unclear in current knowledge, may cause large uncertainties in aerosol climate effect assessments. To better understand this research gap, a well-developed online coupled regional climate-chemistry model is employed here to investigate the influences of different aerosol mixing states on the direct interactions between aerosols and the East Asian summer monsoon (EASM). The results show that anthropogenic aerosols have high-level loadings with heterogeneous spatial distributions in East Asia. Black carbon aerosol loading accounts for more than 13% of the totals in this region in summer. Thus, different aerosol mixing states cause very different aerosol single scattering albedos, with a variation of 0.27 in East Asia in summer. Consequently, the sign of the aerosol instantaneous direct radiative forcing at the top of the atmosphere is changed, varying from - 0.95 to + 1.50 W/m(2) with increasing internal mixing aerosols. The influence of aerosol mixtures on regional climate responses seems to be weaker. The EASM circulation can be enhanced due to the warming effect of anthropogenic aerosols in the lower atmosphere, which further induces considerable aerosol accumulation associated with dynamic field anomaly, decrease in rainfall and so on, despite aerosol mixtures. However, this interaction between aerosols and the EASM will become more obvious if the aerosols are more mixed internally. Additionally, the differences in aerosol-induced EASM anomalies during the strongest and weakest monsoon index years are highly determined by the aerosol mixing states. The results here may further help us better address the environmental and climate change issues in East Asia.
Mt. Everest (Qomolangma or Sagarmatha), the highest mount on Earth and located in the central Himalayas between China and Nepal, is characterized by highly concentrated glaciers and diverse landscapes, and is considered to be one of the most sensitive area to climate change. In this paper, we comprehensively synthesized the climate and environmental changes in the Mt. Everest region, including changes in air temperature, precipitation, glaciers and glacial lakes, atmospheric environment, river and lake water quality, and vegetation phenology. Historical temperature reconstruction from ice cores and tree rings revealed the distinct features of 20th century warming in the Mt. Everest region. Meteorological observations further proved that the Mt. Everest region has been experiencing significant warming (approximately 0.33 degrees C/decade) but relatively stable precipitation during 1961-2018 AD. Projected results (during 2006-2099 AD) under different representative concentration pathway scenarios showed a general warming trend in the region, with larger warming occurring in winter than in summer. Meanwhile, the precipitation projections varied spatially with no significant trends over the region. Intensive glacier shrinkage was characterized by decreasing glacier areas, while glacier-fed river runoff increased. Glacial lakes expanded with increasing glacial lake areas and numbers. These findings indicated a clear regional hydrological response to climate warming. Owing to the remote location of Mt. Everest, the present atmospheric environment remained relatively clean; however, long-range transport of atmospheric pollutants from South Asia and West Asia may have substantially influenced the Mt. Everest region, resulting in increasing concentrations of pollutants since the Industrial Revolution. Anthropogenic activities have been shown to influence river and lake water quality in this remote region, especially in the downstream. The end of the vegetation growing season advanced in the northern slope and did not change in southern slope region of the Mt. Everest, and there was no significant change in start date of the growing season in the region. This review will enhance our understanding of climate and environmental changes in the Mt. Everest region under global warming.