共检索到 3

The anchor is commonly applied to enhance the seismic stability of a slope. Presently, the seismic permanent displacement of slope is widely estimated with a constant yield acceleration based on Newmark sliding block method, which is not a realistic scenario. Besides, the soil slope is mostly inhomogeneous and anisotropic, where a circular slip surface is not quite suitable for slope stability analysis. To overcome the shortcomings of estimation method of earthquake-induced displacement, a point-to-point strategy is applied to generate the instant discrete failure mechanism of inhomogeneous and anisotropic anchored slope to determine the time-dependent yield acceleration by limit analysis. The recursive formulas of slope and anchor parameters versus seismic displacement at tiny time interval are established to predict the dynamic behavior of slope. The seismic displacement at tiny time interval is estimated by Newmark sliding block method, and the total earthquakeinduced displacement is subsequently determined. The anchor axial force increases significantly during seismic excitation, which causes a time-dependent characteristic of yield acceleration. Moreover, the effect of inhomogeneity and anisotropy is investigated. The slope becomes more vulnerable to earthquake while the inhomogeneity of unit weight is considered. An increment in inhomogeneous factor or a decrement in anisotropic factor of friction angle or cohesion causes the stability of anchored slope to increase.

期刊论文 2025-04-01 DOI: 10.1016/j.soildyn.2025.109220 ISSN: 0267-7261

To clarify the effect of various anchor cable failure modes on the dynamic responses of slopes, the FLAC3D software was redeveloped. Constitutive models of cable elements in different anchor cable failure modes were proposed and embedded into the main program of slope dynamic calculation. The axial force, acceleration, and displacement responses in different anchor cable failure modes were compared and analyzed. The effects of seismic parameters on the anchor cable failure modes were also investigated. A matching relationship between the ultimate load-bearing capacities of the anchorage, anchoring interface, and tendon was proposed. The results reveal that the seismic intensity causing anchor cable damage in anchorage failure mode (AFM) and grouting body failure mode is 0.2g-0.3 g lower than that in tendon failure mode. At the moment of failure, the stress released by the anchor cable in AFM is the highest, with the most evident instantaneous slope acceleration fluctuation. In the collaborative seismic design of the anchorage, anchoring section, and anchor tendon, the ultimate load-bearing capacities of the anchorage and anchoring interface should be increased by 1.8 times to match the tensile bearing capacity of the tendon. This study provides a reference for the seismic anchorage design of slopes and offers suggestions for selecting seismic design parameters for anchor cables.

期刊论文 2025-01-01 DOI: 10.1016/j.soildyn.2024.109077 ISSN: 0267-7261

In order to analyze the adverse effect of flood affection on slope stability, the analytical expressions of buoyancy force and capillary force, hydrodynamic pressure and impact force, and scour erosion were proposed based on the aging characteristics of soil shear strength and limit equilibrium theory. According to the load combination and flood action, shear failure occurs preferentially at the foot of slope. Then, the plastic zone continues to extend upward to produce traction landslide disaster mode. Furthermore, the power function relation between shear strength index and time was established. The nonlinear accelerated creep model was also obtained. At the same time, the safety factor formula for flood loading effect slope aging stability, the time-varying characteristic value of anchor force and the compensation value of anchor force were also obtained and used to research sliding mechanism. In addition, the numerical calculation example shows that the slope safety factor decreases by more than 20 % considering the effect of flood ascending scour and impact, and the compensation value of anchorage force increases obviously with time increasing. Simultaneously, the change rate of compensation value of anchorage force increases nonlinearly with the increase of design safety factor.

期刊论文 2024-09-15 DOI: 10.1016/j.heliyon.2024.e37126
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页