共检索到 6

Currently, traditional vertical barrier materials are associated with large carbon footprints and high costs (in some regions) due to the widespread use of Portland cement and sodium-based bentonite materials. In recent years, a new technology of Carbonized Reactive Magnesia Cement (CRMC) has gradually been developed to sequester CO2 using Eco-cement. The application prospects of CRMC in vertical barrier materials are explored in this study. The changes in flowability of Reactive Magnesia Cement (RMC) slurry and the unconfined compressive strengthen (UCS) and permeability characteristics of CRMC treated soils are investigated. The results show that the fluidity of RMC slurry decreases further with the increase of MgO substitute cement content. For RMC slurry meeting the fluidity requirements, UCS increased rapidly in the early period (3 h) after carbonization, reaching 348.33 kPa, and the hydraulic conductivity k decreased (k < 1 x10(- 7) cm/s) in the later period (14d), and the final hydraulic conductivity reached 6.13 x 10(- 8) cm/s (28d). The pores of the material are filled with a large number of hydration products and carbonates, which alters the pore size distribution structure of the material. This is the reason for the mechanical properties and permeability performance of CRMC treated soils. The overall results of this study well demonstrate that CRMC treated soils, as a new, environmentally friendly, and cost-effective material, have great potential in the construction of vertical barriers.

期刊论文 2025-04-01 DOI: 10.1016/j.psep.2025.106918 ISSN: 0957-5820

Shear strength is the key index to determine the stability of a soil slope, and cementation between iron oxide and clay minerals is one of the internal factors affecting soil shear strength; however, the effects of the form of iron oxide on the shear strength of granite-weathered red soil are still unclear. Kaolinite, which is the main clay mineral of granite red soil, was selected as the research object, and the effects of three different forms of iron oxide (hematite: HT, goethite: GT, and amorphous iron oxide: AIO) on the soil microstructure, microscopic quantitative parameters, cohesion, internal friction angle, and shear strength were analyzed by scanning electron microscopy, X-ray diffraction, and the shear strength test. The results revealed that the iron oxide promoted the cementation of soil particles, and the cementation characteristics differed with the different forms of iron oxide. Hematite mainly showed flocculent cementation, poor cementation, and simple soil microstructures. Goethite mainly exhibited acicular cementation and the best cementation effect. The degree of aggregation of the soil particles was increased by the coatings, thus forming larger aggregate particles. The cementation effect of amorphous iron oxide was between those of hematite and goethite but included both the flocculation cementation of hematite and acicular cementation of goethite. Amorphous iron oxide and goethite effectively increased the contact area and friction degree between soil particles, while hematite had the opposite effect. The addition of three kinds of ferric oxide reduced the fractal dimension of soil, increased the apparent porosity, and promoted the irregularity of particles to a certain extent, among which hematite had the most significant growth on the long and short axes of the particles. At a content of 10 g kg-1, the addition of AIO and GT increased the soil cohesion and internal friction angle, and therefore increased the soil shear strength, and it was mainly determined by the soil microstructure: the contact area, apparent porosity, and particle short axis. These results indicated that GT and AIO are the main cementing materials affecting soil mechanical properties, and the transformation of iron oxide should be paid attention to when predicting soil slope stability.

期刊论文 2025-01-01 DOI: 10.3390/min15010016

Cellulose crystallinity can be altered by various treatment methods, including mechanical or chemical treatments, which can affect the properties of thermoplastic composites. In this study, the crystallinity of cellulose was manipulated using mechanical ball milling. The primary objective was to assess the impact of altering the cellulose crystallinity on the overall performance of high-density polyethylene (HDPE)-based composites. The mechanical and structural properties of the composites were assessed using tensile and impact tests, attenuated total reflectance infrared ( ATR-IR ) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The degradation properties of the HDPE composites were evaluated using a soil-burial degradation test. The impact of cellulose crystallinity on the mechanical properties of HDPE composites showed a marginal enhancement of 5% in tensile strength with the incorporation of 2% low-crystallinity cellulose (LCC). The highest impact strength of the HDPE composites was attained by the incorporation of 6% LCC. ATR-IR analysis showed that the peak intensity of the HDPE-LCC composite decreased, whereas the HDPE composite with high-crystallinity cellulose (HCC) did not exhibit changes in peak intensity compared to the HDPE spectrum. SEM examination showed that LCC possessed superior dispersion in the HDPE matrix compared to that of HCC. Thermal degradation decreased by up to 32% with the addition of HCC and LCC. A soil burial degradation study showed that the mechanical properties of the HDPE-LCC composite deteriorated more than those of the HDPE-HCC composite after 24 months. This study concluded that altering the crystallinity of cellulose can lead to composites with tailored properties.

期刊论文 2025-01-01 DOI: 10.17576/jsm-2025-5401-10 ISSN: 0126-6039

In the present study, three-axis dynamic tests were performed on different samples of soil, and the effect of montmorillonite based carbon nanotubes (CNT) and amorphous silica dioxide nanoparticles presence, density, hydrostatic pressure and moisture percentage on the elastic modulus and equivalent damping ratio of soil was investigated. Considering that in the present research, experimental studies and tests were carried out on three samples of sandy soil reinforced with 2 % volume fraction CNT, sandy soil reinforced with 8 % nanosilica and sandy soil reinforced with 0.5 % CNT and 4 % nanosilica. Also, the optimum moisture percentage has been determined for these types of soils. In general, with the increase of hydrostatic pressure and compaction of sand, the elastic modulus increases, and the amount of increase is different according to the type of nanoparticles. For 1 % applied strain and soil sand, with the increase of hydrostatic pressure from 100 kPa to 300 kPa, the elastic modulus of sand with 2 % CNT and 8 % nanosilica increases by 36 % and 214 %, respectively. This shows the favorable effect of silica nanoparticles on increasing the Young's modulus of sand by increasing the amount of hydrostatic pressure. The effect of CNT on improving the elastic modulus of sand in dry state is much higher than the effect of nanosilica. At 1 % strain and 4 % compaction, adding 2 % CNT to sand increases the elastic modulus of sand about 4 times compared to sand reinforced with 8 % nanosilica.

期刊论文 2024-02-09 DOI: 10.1016/j.conbuildmat.2023.134203 ISSN: 0950-0618

Arctic soils are the largest pool of soil organic carbon worldwide. Temperatures in the Arctic have risen faster than the global average during the last decades, decreasing annual freezing days and increasing the number of freeze-thaw cy-cles (temperature oscillations passing through zero degrees) per year as the temperature is expected to fluctuate more around 0 degrees C. At the same time, proceeding deepening of seasonal thaw may increase silicon (Si) and calcium (Ca) con-centrations in the active layer of Arctic soils as the concentrations in the thawing permafrost layer might be higher de-pending on location. We analyzed the importance of freeze-thaw cycles for Arctic soil CO2 fluxes. Furthermore, we tested how Si (mobilizing organic C) and Ca (immobilizing organic C) interfere with the soil CO2 fluxes in the context of freeze-thaw cycles. Our results show that with each freeze-thaw cycle the CO2 fluxes from the Arctic soils decreased. Our data revealed a considerable CO2 emission below 0 degrees C. We also show that pronounced differences emerge in Arctic soil CO2 fluxes with Si increasing and Ca decreasing CO2 fluxes. Furthermore, we show that both Si and Ca concentra-tions in Arctic soils are central controls on Arctic soil CO2 release, with Si increasing Arctic soil CO2 release especially when temperatures are just below 0 degrees C. Our findings could provide an important constraint on soil CO2 emissions upon soil thaw, as well as on the greenhouse gas budget of high latitudes. Thus we call for work improving understanding of freeze-thaw cycles as well as the effect of Ca and Si on carbon fluxes, as well as for increased consideration of those factors in wide-scale assessments of carbon fluxes in the high latitudes.

期刊论文 2023-04-20 DOI: 10.1016/j.scitotenv.2023.161943 ISSN: 0048-9697

Layers of volcanic ash and Andosol soils derived from the ash may play an important role in preserving snow and ice as well as in the development of permafrost conditions in (a) the immediate vicinity of volcanoes at high elevations or at high latitudes and (b) land areas that are often distant from volcanic activity and are either prone to permafrost or covered by snow and ice, but have been affected by subaerial ash deposition. The special properties of volcanic ash are critically reviewed, particularly in relation to recent research in Kamchatka in the Far East of Russia. Of special importance are the thermal properties, the unfrozen water contents of ash layers, and the rate of volcanic glass weathering. Weathering of volcanic glass results in the development of amorphous clay minerals (e.g. allophane, opal, palagonite), but occurs at a much slower rate under cold compared to warm climate conditions. Existing data reveal (1) a strong correlation between the thermal conductivity, the water/ice content, and the mineralogy of the weathered part of the volcanic ash, (2) that an increase in the amounts of amorphous clay minerals (allophane, palagonite) increases the proportion of unfrozen water and decreases the thermal conductivity, and (3) that amorphous silica does not alter to halloysite or other clay minerals, even in the Early Pleistocene age (Kamchatka) volcanic ashes or in the Miocene and Pliocene deposits of Antarctica due to the cold temperatures. The significance of these findings are discussed in relation to past climate reconstruction and the influence of volcanic ash on permafrost aggradation and degradation, snow and ice ablation, and the development of glaciers.

期刊论文 2017-06-01 DOI: 10.1346/CCMN.2017.064057 ISSN: 0009-8604
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-6条  共6条,1页