Moderate-size earthquakes, and the presence of water saturated soil in the near surface can trigger the liquefaction geohazard causing buildings to settle / tilt or collapse, damaging bridges, dams, and roads. A number of paleo-seismic research have focused on the Himalayan area as a potential site for liquefaction. The present study site is in the south of the tectonically active Himalayan foothills and lies in earthquake Seismic Zone III. Therefore, the region can experience earthquakes from nearby regions and can potentially damage civil infrastructures due to liquefaction. The objective of this paper is to determine the susceptibility of alluvial soil deposits to liquefaction for seismic hazard and risk mitigation. Liquefaction geohazard study of alluvial deposits was carried out using shear wave velocity (Vs) profiling. Preliminary assessment of the soil is made by building the average shear wave velocity map up to 30 m depth (Vs30) and by constructing the corrected shear wave velocity (V-s1) maps. It was observed from the Vs30 map that a major portion of the studied area lies in Site Class CD and only a small portion lies in Site Class D. Moreover, it is also noticed from the V(s1 )map that a smaller of the area has V(s1 )lower than the upper limit of V-s1(& lowast; )(215 m/s) below which liquefaction may occur. The region showing lower values of V(s1 )is further examined for liquefaction hazard as per the guidelines given by Andrus et al. (2004). Resistance of the soil to liquefaction, stated as cyclic resistance ratio (CRR), and the magnitude of cyclic loading on the soil induced by the earthquake shaking, stated as cyclic stress ratio (CSR) are computed for the area. Several maps of factor of safety (FS) for different depths are prepared by taking the ratio of CSR and CRR. When FS < 1, the soil is considered prone to liquefaction. Furthermore, susceptibility of soil to liquefaction against different peak horizontal ground surface acceleration (PHGSA) and varying depth of water table is also evaluated in terms of factor of safety. It is observed from this study that for lower levels of PHGSA (up to 0.175 g) the soil can be considered safe. However, the soil becomes more vulnerable to liquefaction when PHGSA is above 0.175 g and with rising water table. The comparison of the factor of safety (FS) obtained using the SPT-N method and the Vs-derived approach shows consistent results, with both methods confirming the absence of liquefaction in the studied soil layers.
Estimating the spatial distribution of hydromechanical properties in the investigated subsoil by defining an Engineering Geological Model (EGM) is crucial in urban planning, geotechnical designing and mining activities. The EGM is always affected by (i) the spatial variability of the measured properties of soils and rocks, (ii) the uncertainties related to measurement and spatial estimation, as well as (iii) the propagated uncertainty related to the analytical formulation of the transformation equation. The latter is highly impactful on the overall uncertainty when design/target variables cannot be measured directly (e.g., in the case of piezocone Cone Penetration Test-CPTu measurements). This paper focuses on assessing the Propagated Uncertainty (PU) when defining 3D EGMs of three CPTu-derived design/target variables: the undrained shear resistance (su), the friction angle ((p'), and the hydraulic conductivity (k). We applied the Sequential Gaussian Co-Simulation method (SGCS) to the measured profiles of tip (qc) and shaft resistance (fs), and the pore pressure (u2), measured through CPTus in a portion of Bologna district (Italy). First, we calculated 1000 realizations of the measured variables using SGCS; then, we used the available transformation equations to obtain the same number of realizations of su, (p', and k. The results showed that PU is larger when the transformation equation used to obtain the design/target variable is very complex and dependent on more than one input variable, such as in the case of k. Instead, linear (i.e., for su) or logarithmic (i.e., for (p') transformation functions do not contribute to the overall uncertainty of results considerably.
This study establishes a foundational framework addressing challenges, implications, and potential remedies related to collapsible soils. Serving as a cornerstone for global exploration, it emphasizes the importance of understanding geological, structural, and mechanical characteristics for early identification and proactive mitigation. The study underscores the significance of preventing structural damages in regions prone to collapsible soils, discussing their diverse types and origins, structural composition, and mechanical behavior. A detailed exploration highlights their prevalence in semi-arid and arid regions, emphasizing distinct geological features associated with their occurrence.