Aerosol microphysical properties, scattering and absorption characteristics, and in particular, the vertical distributions of these parameters over the eastern Loess Plateau, were analyzed based on aircraft measurements made in 2020 during a summertime aircraft campaign in Shanxi, China. Data from six flights were analyzed. Statistical characteristics and vertical distributions of aerosol concentration, particle size, optical properties, including aerosol scattering coefficient (Sigma sp), backscattering ratio (beta sc), Angstro spacing diaeresis m exponent (alpha), single-scattering albedo (SSA), partially-integrated aerosol optical depth (PAOD), and black carbon concentration (BCc), were obtained and discussed. Mean values of aerosol particle number concentration (Na), particle volume concentration (Va), mass concentration (Ma), surface concentration (Sa), and particle effective diameter (EDa) were 854.92 cm-3, 13.37 mu m3 cm- 3, 20.06 mu g/m3, 170.08 mu m3 cm- 3, and 0.47 mu m, respectively. Mean values of BCc, Sigma sp (450, 525, 635 nm), beta sp (525 nm), alpha(635/450), and SSA were 1791.66 ng m- 3, 82.37 Mm- 1 at 450 nm, 102.57 Mm- 1 at 525 nm, 126.60 Mm-1 at 635 nm, 0.23, 1.47, and 0.92, respectively. Compared with values obtained in 2013, Na decreased by 60% and Ma decreased by 45%, but the scattering coefficients increased in different degrees. In the vertical direction, aerosol concentrations were higher at lower altitudes, decreasing with height. Vertical profiles of Sigma sp, beta sp, alpha(635/450), and BCc measured during the six flights were examined. Two peaks in Na were identified near the top of the boundary layer and between 2000 and 2200 m. Fine particles with EDa smaller than 0.8 mu m are dominant in the boundary layer and coarse aerosols existed aloft. Aerosol scattering properties and BCc in the lowest layer of the atmosphere contributed the most to the total aerosol radiative forcing. SSA values were greater than 0.9 below 2500 m, with lower values at higher levels of the atmosphere. On lightly foggy days, SSA values were greater than 0.9, and aerosols played a cooling role in the atmosphere. On hazy days, lowerlevel SSA values were generally greater than 0.85, with aerosols likely having a warming effect on the atmosphere. 48-hour backward trajectories of air masses during the observation days showed that the majority of aerosol particles in the lower atmosphere originated from local or regional pollution emissions, contributing the most to the total aerosol loading and leading to high values of aerosol concentration and radiative forcing.
The physical properties of black carbon (BC) including the mass loading, size distribution and mixing state were in-situ characterized by aircraft measurements using a single particle soot photometer (SP2) in the lower troposphere over Beijing area. The flights were conducted in both late spring and winter during the daytime with well-developed planetary boundary layer (PBL). The BC mass in the PBL (BCPBL) in late spring showed no apparent vertical gradient nor correlation with the PBL height (PBLH) due to strong convective mixing; in winter the BCPBL, was more concentrated near ground and anti-correlated with the PBLH due to dilution effect of the dominant cleaner northerly air masses at higher altitude. The BC mass loading at height h, C(h) within the PBL can be extended from the surface level (C0) in late spring; for levels above the PBL, C(h) can be parameterized by applying an exponential decline function C(h) = C0*exp(h/hs), with the scale height (hs) of 0.31 +/- 0.16 km and 0.66 +/- 0.24 km for late spring and winter respectively. This parameterization excluded the profiles for: turbulent conditions when the BC mass was efficiently vented upwards and diluted, expressed as C(h) = C0 up to the top of the PBL; or in periods of strong southerly advection, when the entire column was significantly influenced by regional transport from the polluted south regions. The BC core mass median diameters (MMD) were commonly populated at 205-220 nm in both seasons, with additional mode of MMD similar to 195 nm also frequently observed in late spring. The bulk relative coating thickness of BC (coated diameter divided by uncoated core diameter (D-p/D-c) in the PBL mostly populated at 2.0-2.2 but at similar to 1.2-1.6 in the lower free troposphere (FT). The mass absorption cross of BC at 550 nm (MAC(550)), constrained by the SP2 measurements, was largely influenced by the coating thickness, was relatively consistent in the PBL at similar to 8.6 m(2) g(-1), but reduced to 7-7.5 m(2 )g(-1) in the FT or turbulent condition due to decreased coatings. The BC was found to exhibit smaller particle size in the FT but larger in the PBL, which may imply larger BC have been scavenged by low-level clouds. The BC particles trapped in the PBL or regionally transported from polluted region represent the most absorbing element in the particulate matter population and should be particularly considered in evaluating the radiative forcing impact of aerosols over this region.