Nanomaterials play a crucial role in various applications, but their environmental impact necessitates effective recycling strategies. This study investigates the effects of different ZnO nanoparticles (ZnO-NPs) sizes (0, 30, 50, and 90 nm) on Agrostis stolonifera, focusing on physiological and biochemical responses, root exudate, and microbial community structure. The results showed that the most optimal physiological and biochemical responses, including enhanced plant growth and increased activities of superoxide dismutase, peroxidase, and catalase, were observed at 50 nm ZnO-NPs. Agrostis stolonifera accumulated more ZnO-NPs at 30 nm, with Zn content in root and leaf tissues reaching 186 mg/kg and 294 mg/kg, respectively. Meanwhile, SEM-Mapping and TEM analyses confirmed the absorption and transport of ZnO-NPs within Agrostis stolonifera. Furthermore, root exudates analysis revealed an increase in the types of organic matter secreted by roots at 30 nm and 50 nm ZnO-NPs, while 90 nm ZnO-NPs had the opposite effect. 16S rRNA gene sequencing showed that the species diversity and uniformity of root microorganisms exhibited contrasting trends with increasing ZnO-NPs size, with roots exposed to 50 nm ZnO-NPs showed higher species richness than those exposed to 30 nm or 90 nm. However, beneficial microorganisms such as Bryobacter and Methylophilus were inhibited by 90 nm ZnO-NPs. This study provides novel insights into a potential ZnO-NPs recycling strategy in soil using Agrostis stolonifera, offering a means to mitigate nanoparticle-induced damage to soil and crops.
. Two cool-season putting green turfgrass species, annual bluegrass and creeping bentgrass, are differential in ice encasement tolerance. Physiological mechanisms associated with creeping bentgrass ice encasement tolerance and annual bluegrass susceptibility are not understood. The objectives were to evaluate oxygen, ethylene, and CO2 content within the upper soil space of the plants while frozen and immediately after ice melt after 0, 5, 10, 20, and 28 days of ice encasement (2.54 cm of ice) in growth chamber conditions. Following ice melt, plant samples were separated into leaf, crown, and root tissues and used to evaluate carbohydrate and amino acid content. Annual bluegrass exhibited higher damage (slower recovery rates) on most sampling days compared with creeping bentgrass. The organs that were most damaged and exhibited a differential principal component analysis snapshot, were the leaf and crown tissues. Creeping bentgrass may preserve leaf and crown tissues for postwinter recovery whereas significant metabolic changes occur in annual bluegrass leaves and crowns. Creeping bentgrass retained total amino acids in leaves following ice encasement whereas total leaf amino acid levels declined in annual bluegrass. Specific carbohydrates and amino acids such as the ability to maintain high levels of fructose, asparagine, and proline may be important indicators of the tolerance to ice encasement stress. On the basis of more prominent carbohydrate and amino acid loss in leaves and crowns and higher levels of CO2 evolution, annual bluegrass may exhibit a higher metabolism and/or tissue damage during ice encasement compared with creeping bentgrass, which could reduce spring recuperative potential.
Root-knot nematodes were discovered in severely declining creeping bentgrass putting greens at a golf course in Indian Wells, Riverside County, California. The exhibited disease symptoms included chlorosis, stunted growth, and dieback. Based on morphological examination and measurements of J2 females and males, it was suggested that the causal pathogen was Meloidogyne marylandi. This identification was confirmed by analysis of the D2-D3 expansion segments of 28S rRNA and COI gene sequences. The host status of 28 plant species was evaluated in greenhouse trials. All tested monocots, except rye and Allium species, were found to be hosts, while no reproduction occurred on dicots. Temperature-tank experiments helped determine that the life cycle of M. marylandi was completed between 17-35 degrees C, with a base temperature of 8.3 degrees C and a required heat sum of 493 degree-days (DD). In greenhouse trials in pasteurized soil and near-ideal growing conditions, M. marylandi did not cause significant growth reduction of creeping bentgrass cv. Penn A-4, even at very high J2 inoculation densities. It is highly probable that other biotic and abiotic factors contributed to the observed putting green damage.
Cultural and environmental factors can place creeping bentgrass (Agrostis stolonifera) under extreme stress during the summer months. This stress, coupled with the growth adaptation of creeping bentgrass, can result in shallow, poorly rooted stands of turf. To enhance root zone oxygen and rooting of creeping bentgrass, golf courses use methods such as core and solid-tine aerification, and sand topdressing. An additional method of delivering oxygen to the soil could be irrigation with nanobubble-oxygenated water. The properties of nanobubbles (NBs) allow for high gas dissolution rates in water. Irrigating with NB-oxygenated water sources may promote increased rooting of creeping bentgrass putting greens during high-temperature periods and lead to a more resilient playing surface. The objectives of this study include comparing the effects of irrigation with NB-oxygenated water sources with untreated water sources on creeping bentgrass putting green root zone and plant health characteristics using field and controlled environment experiments. Treatments included NB-oxygenated potable water and irrigation pond water, and untreated potable and irrigation pond water. In the field, NB-oxygenated water did not enhance plant health characteristics of creeping bentgrass. In 1 year, NB oxygenated water increased the daily mean partial pressure of soil oxygen from 17.48 kPa to 18.21 kPa but soil oxygen was unaffected in the other 2 years of the trial. Subsurface irrigation with NB-oxygenated water did not affect measured plant health characteristics in the greenhouse. NB-oxygenation of irrigation water remains an excellent means of efficiently oxygenating large volumes of water. However, plant health benefits from NB-oxygenated irrigation water were not observed in this research.