The rapid growth of the global population and the transformation and upgrading of dietary structures have led to a widening gap in the demand for cropland resources. Research on agricultural land reallocation that seeks to maximize cropland availability and increase grain production while also considering the preservation of natural ecosystems still has gaps. Following the theoretical assumptions of the agricultural land reallocation process, this study constructs a comprehensive framework for integrating scale, structure, and prioritization. Sichuan Province, China's main grain-producing region, is used as an example for a case study. The results demonstrate that the scale of agricultural land reallocation decreased from 56,742.01 to 44,965.52 km2 after correcting the evaluation of ecological conservation importance and crop production suitability under spatial and non-spatial constraints. There are significant differences in crop production suitability for agricultural land reallocation structures. Despite the wide spatial distribution of forest land, its utilization is challenging. Therefore, cropland, garden land, and grassland are prioritized for exploitation and utilization. In the eight priority zones for agricultural land reallocation, the main obstacles are constituted by single or composite factors of utilization convenience, spatial agglomeration, and facility stability. In general, agricultural land reallocation needs to be supported by considering different dimensions of resource availability, structural convertibility, and spatial compatibility. This approach maximizes the availability of resources for grain production while minimizing damage to natural ecosystems.
The UK sixth carbon budget has recommended domestic biomass supply should increase to meet growing demand, planting a minimum of 30,000 hectares of perennial energy crops a year by 2035, with a view to establishing 700,000 hectares by 2050 to meet the requirements of the balanced net zero pathway. Miscanthus is a key biomass crop to scale up domestic biomass production in the United Kingdom. A cohesive land management strategy, based on robust evidence, will be required to ensure upscaling of miscanthus cultivation maximizes the environmental and economic benefits and minimizes undesirable consequences. This review examines research into available land areas, environmental impacts, barriers to uptake, and the challenges, benefits, and trade-offs required to upscale miscanthus production on arable land and grassland in the United Kingdom. Expansion of perennial biomass crops has been considered best restricted to marginal land, less suited to food production. The review identifies a trade-off between avoiding competition with food production and a risk of encroaching on areas containing high-biodiversity or high-carbon stocks, such as semi-natural grasslands. If areas of land suitable for food production are needed to produce the biomass required for emission reduction, the review indicates there are multiple strategies for miscanthus to complement long-term food security rather than compete with it. On arable land, a miscanthus rotation with a cycle length of 10-20 years can be employed as fallow period for fields experiencing yield decline, soil fatigue, or persistent weed problems. On improved grassland areas, miscanthus presents an option for diversification, flood mitigation, and water quality improvement. Strategies need to be developed to integrate miscanthus into farming systems in a way that is profitable, sensitive to local demand, climate, and geography, and complements rather than competes with food production by increasing overall farm profitability and resilience.
Dust storms are natural events that remove and relocate surface soil, damage vegetation crops, and disrupt many other aspects of the earth 's terrestrial ecosystem. Despite the importance of the risk assessment of dust hazards, vulnerability modeling of them is very limited. For this reason, this study provides a conceptual model based on Structural Equation Modeling and the Finite Mixture Partial Least Squares (FIMIX-PLS) approach using interviews and questions for vulnerability modeling of dust in Ahvaz County, Khuzestan province, Iran. Key model drivers included Resilience Actions, Natural-Physical effects, Economic Influence, and Social Influence. The Aerosol Optical Depth (AOD) product of MODIS/Terra was used to develop a dust hazard map. MODIS/Terra performance was evaluated using observed PM10 data from Ahvaz County air pollution monitoring stations. Land use mapping was used for spatial detection of agricultural land affected by the intensity of the AOD map in the previous step. The vulnerability model fitting results showed that the model had acceptable validity (SRMR = 0.013). Results showed that approximately 25 % of agricultural lands are at high and very high dust hazard risk. Based on modeling results, natural-physical variables affect about 89 % and 97 % of social and economic drivers, respectively. Conversely, social influences significantly negatively affect dust storm resilience resulting in agricultural vulnerability. Based on results from the integrated model, strengthening farmers ' resilience strategies against dust hazards requires additional research and attention.
Under conditions of ongoing climate warming and increasing anthropogenic impact on land resources, the use of moisture-saving soil-protecting technologies becomes especially important. Snow cover is of great importance for agriculture, as it changes radiation and thermal balance of underlying surface, protecting soil from cooling and winter crops from freezing, accumulates winter precipitation, being the most important source of increasing soil moisture reserves in arid and subarid zones in spring. Winter precipitation accounts for up to 30% of the annual norm. Soil moisture reserves formed with their help take up to 42% in total water consumption for grain crop yield formation during wet summer and up to 75% during dry summer. This article aims to study the effect of different methods of snow retention and snow cover height on the yield of grain crops. An effective method of snow retention is leaving high stubble after harvesting winter and spring crops. Leaving stubble bushes with a height of 0.35-0.40 m and a width of 1.5 m every 4.5 m provides accumulation of a solid snow cover in steppe areas with a height of 0.30-0.35 m, which increases the yield of wheat. Waders provide a more uniform distribution of snow cover than forest strips. Climate change contributes to the fact that snow retention becomes an urgent problem not only in the dry steppe, but also to the north - even in the forest-steppe. Creation of snow retarders was done on Vetelny state farm, located in Balashovsky district in the western part of Saratov region, in the steppe zone, where chernozem soils prevail in the soil cover. In the autumn period, snow barriers were installed, and in the winter period, their effect on snow accumulation was studied. The study of the effect of snow barriers on soil moisture accumulation during the growing season of winter wheat was compared in the zones of dry steppe, steppe and forest-steppe. It was revealed that during regrowth of winter wheat the least amount of productive moisture stocks in 0-1.0 m soil layer was contained in dry steppe 1377 m(3).ha(-1), the highest in forest-steppe zone up to 1841 m(3).ha(-1). Snow retention increased the amount of moisture in the soil in the dry steppe, steppe and foreststeppe zone by 251, 151, 115-131 m(3).ha(-1), or 18, 10, 6-8%, respectively. Thus, rational use of winter precipitation is a significant reserve of agricultural landscape productivity increase, especially in dry-steppe areas.