Food packaging is one of the most commonly used materials today due to its affordability and convenience. However, this type of packaging is challenging to handle after use, leading to significant environmental waste since it is often made from petrochemical polymers that take a long time to decompose. Polyvinyl alcohol (PVA) is a low-cost, safe, and biodegradable polymer with high potential for food packaging, offering a solution to waste issues in the polymer industry. However, its limited hydrophilicity, bactericidal properties, and poor performance in humid conditions hinder its practicality. Enhancing the mechanical properties and water resistance of PVA-based composite films can significantly improve their applicability, particularly in food packaging. In this study, nanocomposite films based on PVA were reinforced with nanocellulose fiber (CNF) and Ag nanoparticles (AgNPs), and cross-linked using citric acid (CA) through the film casting method. The incorporation of CNF and AgNPs improved the structural integrity and thermal stability of the film, while CA crosslinking significantly enhanced water resistance and mechanical properties. The (PVA/CNF/Ag)-CA film exhibited the highest tensile strength (89.44 MPa), Young's modulus (3.29 GPa), and water contact angle (similar to 90 degrees), alongside the lowest water absorption (78.6 %) and a reduced water vapor transmission rate of 6.62 g x h(-1) x m(-2). Compared to pure PVA film, the resulting crosslinked nanocomposite films showed a 32.3 % increase in modulus and a 22.64 % increase in tensile strength. Additionally, the (PVA/CNF/Ag)-CA film exhibited higher thermal stability with 13 % more residue content than uncrosslinked counterparts, reduced moisture absorption, minimal swelling, and water insolubility. However, the CA crosslinking process promoted AgNP aggregation, reducing the antibacterial activity of the (PVA/CNF/Ag)-CA film against Staphylococcus aureus and Escherichia coli, and slowed down its biodegradation in soil. Nevertheless, after seven days of storage under both aerobic and anaerobic conditions, the nanocomposite coatings effectively minimized mass loss and microbial growth on fresh chili peppers. These results highlight the synergistic contribution of CNF/Ag reinforcement and CA crosslinking in enhancing the mechanical strength, thermal stability, and water resistance of PVA-based films for potential food packaging applications.
Biopackaging films, such as those made from Pectin, are increasingly recognized for their sustainability in fruit preservation. This study utilizes Pectin derived from grapefruit peels to create films using evaporation casting. The research investigates factors, including Pectin concentration, sorbitol, calcium ions, and acetic acid. Film morphological and structural characterizations were performed using field emission scanning electron microscopy (FE-SEM), Energy Dispersive X-ray Fluorescence (XRF) spectroscopy, and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). Mechanical properties such as tensile strength (TS) and elongation at break (EAB), as well as physical properties like water vapor transmission rates (WVTR), soil biodegradation, and antibacterial capacity, were evaluated for both Pectin and Pectin/AgNPs films. The results revealed that acetic acid at a concentration of 6.67 g/L converted high methoxyl Pectin to low methoxyl Pectin, which improved gel formation. The optimal film formulation consisted of 10 g/L Pectin, 0.054 g/L calcium ions, and 5 g/L sorbitol, which enhanced film mechanical strength and soil decomposition capacity. Pectin/AgNPs films showed effective antibacterial activity against both Escherichia coli and Bacillus subtilis. Additionally, weight retention and sensory tests demonstrated that Pectin/AgNPs films successfully preserved cherry tomatoes for 10 days. Overall, Pectin and Pectin/AgNPs films show significant promise for fruit preservation, emphasizing their sustainability and effectiveness.
Certain Aspergillus spp. release harmful byproducts known as aflatoxins. These carcinogenic toxins contaminate crops, such as groundnut, maize, and rice. This contamination poses a significant health risk and economic burden. Current control methods have limitations. This review explores the potential of silver nanoparticles (AgNPs) as a novel strategy to mitigate aflatoxin contamination (AC). The review highlights the advantages of AgNPs, such as (1) antimicrobial properties against Aspergillus flavus and Aspergillus parasiticus, the aflatoxin producers; (2) effectiveness at concentrations that do not inhibit fungal growth, potentially reducing aflatoxin production; and (3) potential for eco-friendly synthesis using plant extracts. The review also discusses the potential drawbacks of AgNPs viz. (a) environmental concerns regarding accumulation and impact on beneficial soil microbes; and (b) cytotoxicity towards various organisms, requiring further research on safety. Studies suggest AgNPs can inhibit aflatoxin synthesis by disrupting the transcription of aflatoxin biosynthesis genes, damaging the fungal cell membrane and causing leakage of cellular components, and interfering with the secondary metabolism pathway. The review concludes that AgNPs offer a promising approach for aflatoxin control. However, further research is needed to address cytotoxicity concerns and optimise their safe and effective application in agricultural settings.
To reduce the potential threat of soil loss due to ephemeral gullies, it is crucial to adopt Best Management Practices (BMPs) that prevent damage to landscapes by reducing sediments load. The current research evaluated the impact of five BMPs, including cover crops, grassed waterways, no-till, conservation tillage, and riparian buffer strips for reduction of sediment load from sheet/rill, and ephemeral gully erosion in an agricultural watershed in Southern Ontario, Canada. The study aimed to automatically calibrate AnnAGNPS using genetic algorithm and the most sensitive parameters of the model identified using a combination of Latin Hypercube Sampling (LHS) and One-At-a-Time (OAT) approach. It also utilized the calibrated model to simulate the effectiveness of BMPs in reducing the average seasonal and annual sediment loads from both sources of erosion (sheet/rill, and ephemeral gully) to determine the most effective practices. Riparian buffer strips were consistently successful in decreasing average seasonal sediment load of sheet/rill erosion, with an average reduction efficiency of 72 % in Spring, 64 % in Summer, 65 % in Fall, and 76 % in Winter. In terms of reducing average seasonal sediment load from ephemeral gully erosion, grassed waterways proved to be the most effective BMPs. They showed efficiency of 90 % in Spring; 83 % in Summer; 79 % in Fall; and 75 % in Winter. Considering the average annual sediment load, riparian buffer strips were consistently successful in decreasing average annual sediment load of sheet/rill erosion, with 69% reduction efficiency. Similarly, grassed waterways were the most effective BMPs for reducing average annual sediment load of ephemeral gully erosion, with an efficiency of 81 %. Additionally, grassed waterways were found to be the most efficient BMPs for reducing average annual total sediment load with reduction efficiency of 71 %. These results demonstrate the importance of implementing effective BMPs to address ephemeral gully erosion in watersheds where ephemeral gullies are the main source of erosion.
This research incorporated grapefruit peel-derived Pectin and Silver nanoparticles (AgNPs) into the Chitosan-based bio-packaging film to improve its antibacterial efficacy and physical properties such as moisture content, swelling degree, and biodegradability in soil. Systematic investigations revealed that preservative films made from Chitosan 1.75 wt %, Pectin 0.55 wt %, and AgNP 31 ppm have shown a 17.5-fold reduction in swelling degree in water compared to Chitosan films. At the same time, the anti-gram-positive and anti-gram-negative bacteria capacity, the ability to retain moisture, and biodegradability in soil, have been enhanced. Low swelling degrees provided better barrier performance, extending the shelf life of packaged products by preventing the ingress of oxygen, and water vapor; on the other hand, higher moisture content improved the flexibility and handling characteristics of packaging films, making them easier to manipulate during packaging processes. These findings herald a sustainable option for eco-friendly food packaging, a critical step toward minimizing plastic waste and strengthening food preservation procedures using Chitosan-based antibacterial films enhanced with natural additives. This manuscript explores the incorporation of Pectin extracted from Vietnamese grapefruit peels and silver nanoparticles for the improvement of antibacterial and physical properties of Chitosan-based film as an alternative packaging material. The morphological and structural characteristics of formed films including Chitosan, Chitosan/Pectin, and Chitosan/Pectin/AgNPs films are determined through field emission scanning electron microscopy dispersive X-ray spectroscopy (FE-SEM-EDX) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). The mechanical properties of formed films are determined through tensile strength (TS), and elongation at break (EAB). The antibacterial effectiveness of the formed packaging films is assessed through their effectiveness against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Bacillus subtilis). Especially, the films' physical properties are determined through water contact angle (WCA), moisture content, water solubility, swelling degree (SD), the biodegradation capacity in the soil, and the actual green grape preservation ability of all formed films through the sensory state of the green grapes after 15 days of preservation. Our research concluded that preservative films made from Chitosan 1.75 wt %, Pectin 0.55 wt %, and AgNP 31 ppm have shown a 17.5-fold reduction in swelling degree in water compared to Chitosan films. At the same time, the ability to retain moisture, and biodegradability in soil, especially, the antibacterial ability, have been enhanced. These findings herald a sustainable option for eco-friendly food packaging, a critical step toward minimizing plastic waste and strengthening food preservation procedures through using Chitosan-based antibacterial films enhanced with natural additives. image