共检索到 5

Microbial Induced Calcium Carbonate Precipitation (MICP), recognized as a low-carbon and environmentally sustainable consolidation technique, faces challenges related to inhomogeneous consolidation. To mitigate this issue, this study introduces activated carbon into uranium tailings. The porous structure and adsorption capacity of activated carbon enhance bacterial retention time, increase the solidification rate, and promote the growth and distribution of calcium carbonate, resulting in more uniform consolidation and improved mechanical properties of the tailings. Additionally, a novel independently developed grouting method significantly enhances the mechanical strength of the tailing sand samples. To perform a micro-scale analysis of the samples, distinct activated carbon-tailings DEM models are constructed based on varying activated carbon dosages. Physical experiments and parameter calibration are employed to investigate the micro-mechanical properties, such as velocity field and force chain distribution. Experimental and simulation results demonstrate that incorporating activated carbon increases the calcium carbonate production during the MICP process. As the activated carbon content increases, the peak stress of the tailings initially rises and then declines, reaching its maximum at 1.5 % activated carbon content. At 100 kPa confining pressure, the peak stress is 2976.91 kPa, 1.23-1.59 times that of samples without activated carbon and 6.08-7.86 times that of unconsolidated samples. Micro-scale motion analysis reveals that particle movement is predominantly axial at the ends and radial near the central axis. The initial direction of the primary force chains aligns with the loading direction. Following failure, some primary force chains dissipate, while new chains form, predominantly along the axial direction and secondarily in the horizontal direction. Compared with samples without activated carbon, those containing activated carbon exhibit more uniform force chain distribution, higher stress levels, and greater peak stress. This study offers a novel approach to enhance the stabilization and solidification efficiency of MICP and establishes a DEM model that provides valuable insights into the structural deformation and micro-mechanical characteristics of MICPcemented materials.

期刊论文 2025-09-07 DOI: 10.1016/j.seppur.2025.132947 ISSN: 1383-5866

This study addresses the challenges posed by dispersive soil in various engineering fields, including hydraulic and agricultural engineering, by exploring the effects of physical adsorption on soil modification. The primary objective is to identify an environmentally friendly stabilizer that can alleviate cracking and erosion resulting from soil dispersivity. Activated carbon (AC), known for its porous nature, was examined for its potential to enhance soil strength and erosion resistance. The charge neutralization process was evaluated by monitoring pH and conductivity, in addition to a comprehensive analysis of microscopic and mineral properties. The results show that high sodium levels or low clay contents result in the dispersive nature of soil in water. However, the incorporation of AC can transform such soil into a non-dispersive state. Moreover, both soil strength and erosion resistance exhibited enhancements with increasing AC content and curing duration. The incorporation of AC resulted in a maximum 5.6-fold increase in unconfined compressive strength and a 1.8-fold increase in tensile strength for dispersive soil. Notably, a significant correlation was observed during the curing phase among soil dispersivity, mechanical properties, and pH values. Microscopic analyses revealed that the porous structure of AC facilitated a filling effect and enhanced adsorption capacity, which contributed to improved soil characteristics and reduced dispersivity. The release of hydrogen ions and the formation of aggregates promote water stability. Validation tests conducted on dispersive soil from northern Shaanxi demonstrated the efficacy of physical adsorption using AC as a viable method for modifying dispersive soil in the water conservancy hub. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-02-01 DOI: 10.1016/j.jrmge.2024.02.046 ISSN: 1674-7755

Saline soil is widely distributed in China and poses significant challenges to engineering construction due to its harmful effects, such as salt heaving, dissolution collapse, and frost heaving. The Microbial-Induced Calcite Precipitation (MICP) method is an emerging environmental-friendly modification that can reduce or eliminate the environmental and engineering hazards of saline soil. To verify the feasibility of the MICP method for improving the properties of saline soil, laboratory tests were conducted to study the effects of salt content, activated carbon content and freeze-thaw cycles on the compression and water retention behavior of MICP modified saline soil. The following conclusions were drawn: calcium carbonate produced from the MICP can cement the soil particles of the modified soil structures, which resists the expansion damage caused by salt frost heaving and reduces soil compressibility. Additionally, calcium carbonate particles can fill pores of the soil structures, which improves the water retention capacity of the modified saline soil. The addition of activated carbon can enhance the MICP reaction leading to further reduction in compressibility and enhancement in water retention capacity of MICP modified saline soil.

期刊论文 2024-12-28 DOI: 10.1038/s41598-024-83083-2 ISSN: 2045-2322

Sustainable agriculture initiatives are needed to ensure the food security of the people all over the world. Soilless cultivation methods using hydrogels may give a revolutionary response as well as a more ecological and productive alternative to conventional farming. This study attempted extraction of pectin from the rind of albedo yellow passion fruit (Passiflora edulis var. flavicarpa Degener)and hydrogels from pectin and activated carbon was compared with pure pectin hydrogel; Pectin- Activated Carbon hydrogels (PAC) showed a microporous structure with excellent hydrophilicity and showed superior water holding capacity. Then the prepared hydrogels were examined with various instrumental techniques like FTIR, SEM, XRD, Raman, BET and rheological properties. In the BET analysis, PAC3 shows the highest surface area of 28.771 m2/g when compared to PAC0 at 15.063 m2/g. The germination experiments were performed using mung beans. This study provides an opportunity for the application of pectin hydrogels in agriculture field specifically for home garden or rooftop cultivation.

期刊论文 2024-07-01 DOI: 10.1016/j.ijbiomac.2024.133058 ISSN: 0141-8130

Salinity stress adversely affects agricultural productivity by disrupting water uptake, causing nutrient imbalances, and leading to ion toxicity. Excessive salts in the soil hinder crops root growth and damage cellular functions, reducing photosynthetic capacity and inducing oxidative stress. Stomatal closure further limits carbon dioxide uptake that negatively impact plant growth. To ensure sustainable agriculture in salt-affected regions, it is essential to implement strategies like using biofertilizers (e.g. arbuscular mycorrhizae fungi = AMF) and activated carbon biochar. Both amendments can potentially mitigate the salinity stress by regulating antioxidants, gas exchange attributes and chlorophyll contents. The current study aims to explore the effect of EDTA-chelated biochar (ECB) with and without AMF on maize growth under salinity stress. Five levels of ECB (0, 0.2, 0.4, 0.6 and 0.8%) were applied, with and without AMF. Results showed that 0.8ECB + AMF caused significant enhancement in shoot length (similar to 22%), shoot fresh weight (similar to 15%), shoot dry weight (similar to 51%), root length (similar to 46%), root fresh weight (similar to 26%), root dry weight (similar to 27%) over the control (NoAMF + 0ECB). A significant enhancement in chlorophyll a, chlorophyll b and total chlorophyll content, photosynthetic rate, transpiration rate and stomatal conductance was also observed in the condition 0.8ECB + AMF relative to control (NoAMF + 0ECB), further supporting the efficacy of such a combined treatment. Our results suggest that adding 0.8% ECB in soil with AMF inoculation on maize seeds can enhance maize production in saline soils, possibly via improvement in antioxidant activity, chlorophyll contents, gas exchange and morphological attributes.

期刊论文 2024-01-23 DOI: 10.1186/s12870-024-04753-x ISSN: 1471-2229
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页