Understanding the temperature-dependent mechanical behavior and fracture characteristics of granite is crucial for many engineering projects. In this study, the real-time temperature curves of granite specimens were obtained during the heating and cooling process, and the thermal treatment tests were conducted. The physical properties of the specimen before and after thermal treatment, including mass, volume, and P-wave velocity, were measured. The acoustic emission (AE) signal in the uniaxial compression is monitored. The results indicate that the physical properties of granite deteriorate with temperature, while the mechanical properties show two effects of thermal strengthening and thermal weakening. This phenomenon is comprehensively analyzed by literature statistical data and optical microscopic observation. Furthermore, the AE characteristic is strongly dependent on temperature. High temperature induces more AE ring count to appear in the early stage of loading. As the temperature increases, the crack initiation stress decreases and the table crack propagation stage becomes longer. The attenuation of high-frequency signals and the enhancement of low-frequency signals are related to the development and interaction mechanism of thermally-induced crack and stress-induced crack. At 600 degrees C, the global b-value increases significantly. Meanwhile, the evolution of dynamic b-value helps explain the failure process of granite under axial load after thermal treatment. In addition, a new thermo-mechanical damage statistical constitutive model of granite considering temperature effects is proposed by introducing AE parameters. The main advantages of this model can well fit the nonlinear behavior of granite in the early loading stage after thermal treatment, and reflect the failure process of granite before the peak value. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
Freeze-thaw (F-T) cycling poses a significant challenge in seasonally frozen zones, notably affecting the mechanical properties of soil, which is a critical consideration in subgrade engineering. Consequently, a series of unconfined compressive strength tests were conducted to evaluate the influence of various factors, including fiber content, fiber length, curing time, and F-T cycles on the unconfined compression strength (UCS) of fiber-reinforced cemented silty sand. In parallel, acoustic emission (AE) testing was conducted to assess the AE characteristic parameters (e.g., cumulative ring count, cumulative energy, energy, amplitude, RA, and AF) of the same material under F-T cycles, elucidating the progression of F-T-induced damage. The findings indicated that UCS initially increased and then declined as fiber content increased, with the optimal fiber content identified at 0.2%. UCS increased with prolonged curing time, while increases in fiber length and F-T cycles led to a reduction in UCS, which then stabilized after 6 to 10 cycles. Stable F-T cycles resulted in a strength loss of approximately 30% in fiber-reinforced cemented silty sand. Furthermore, AE characteristic parameters strongly correlated with the stages of damage. F-T damage was segmented into three stages using cumulative ring count and cumulative energy. An increase in cumulative ring count to 0.02 x 104 times and cumulative energy to 0.03 x 104 mvmu s marked the emergence of critical failure points. A sudden shift in AE amplitude indicated a transition in the damage stage, with an amplitude of 67 dB after 6 F-T cycles serving as an early warning of impending failure.