Landslides pose significant risks to human life and infrastructure, particularly in mountainous regions like Inje, South Korea. This study aims to develop detailed landslide susceptibility maps (LSMs) using statistical (i.e., Frequency Ratio (FR), Logistic Regression (LR)) models and a hybrid integrated approach. These models incorporated various factors influencing landslides, including aspect, elevation, rainfall, slope, soil depth, slope length, and landform, derived from comprehensive geospatial datasets. The FR method assesses the likelihood of landslides based on historical occurrences relative to specific factor classes, while the LR method predicts landslide susceptibility through the statistical modeling of multiple predictor variables. The results from the FR, LR, and hybrid methods showed that the cumulative area covered by high and very high landslide susceptibility zones was 13.8%, 13.0%, and 14.28%, respectively. The results were validated using Receiver Operating Characteristic (ROC) curves and the Area Under the Curve (AUC), revealing AUC values of 0.83 for FR, 0.86 for LR, and 0.864 for the hybrid method, indicating high predictive accuracy. Subsequently, we used K-mean clustering algorithms on the hybrid LSI to identify the higher LSI cluster of the region. Furthermore, sensitivity analysis based on landslide density confirmed that all methods accurately identified high-risk areas. The resulting LSMs provide critical insights for land-use planning, infrastructure development, and disaster risk management, enhancing predictive accuracy and aiding in the prevention of future landslide damage.