Debris cover either enhances or reduces glacier melting, thereby modulating glacier response to increasing temperatures. Debris cover variation and glacier recession were investigated on five glaciers; Pensilungpa (PG), Drung Drung (DD), Haskira (HK), Kange (KG) and Hagshu (HG), situated in the topographically and climatically similar zone in the Zanskar Himalaya using satellite data between 2000 and 2020. Analyses reveals that the HK, KG, and HG had a debris-covered area of similar to 24% in 2020, while PG and DD had a debris cover of <10%. Comparing PG to the other four glaciers, it had the highest shrinkage (5.7 +/- 0.3%) and maximum thinning (1.6 +/- 0.6 m a(-1)). Accordingly, detailed measurements of PG's debris cover thickness, temperature and ablation were conducted for eleven days in August 2020. The results indicated a significant variation of temperature and the highest melting was observed near dirty and thin debris-covered ice surface. Thermal conductivity of 0.9 +/- 0.1 Wm(-1) K-1 and 1.1 +/- 0.1 Wm(-1) K-1 was observed at 15 cm and 20 cm debris-depth, respectively. The ablation measurements indicated an average cumulative melting of 21.5 cm during eleven days only. Degree-day factor showed a decreasing trend towards debris cover depth with the highest value (4.8 mm w.e.degrees C-1 d(-1)) found for the dirty ice near the glacier surface and the lowest value (0.4 mm w.e.degrees C-1 d(-1)) found at 30 cm depth. The study highlights the importance of in-situ debris cover, temperature and ablation measurements for better understanding the impact of debris cover on glacier melting.
Glacier mass balance and its sensitivity to climate change depend to a large degree on the albedo and albedo feedback. Although recent increasing studies reconstruct the annual surface mass balance (SMB) based on the relationships between satellite-derived minimum albedo and annual glaciological mass balance (so-called albedo method), a relationship remains conjectural for Tien Shan glaciers. Accumulation and ablation occur simultaneously in summer, causing different surface processes. We examine this relationship using glaciological mass-balance data and the equilibrium-line altitude (ELA) made on the eastern branch of Urumqi Glacier No. 1 (UG1-E), Tuyuksu, Golubin and Glacier No. 354, and ablation-season (May-September) albedo retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) images from 2000 to 2021. Compared with minimum ablation-season albedo, we find higher coefficients of determination between mean ablation-season albedo and glaciological mass balance at UG1-E and Tuyuksu. In contrast, for Golubin and Glacier No. 354, glaciological mass balance is higher correlated to minimum ablation-season albedo than mean ablation-season albedo. This difference is related to the glaciological mass-balance time period. The relationship between albedo and glaciological mass balance is obtained over a shorter time for Golubin (8 years) and Glacier No. 354 (9 years) than for UG1-E (20 years) and Tuyuksu (20 years). Nonetheless, based on the correlativity between MODIS-derived mean ablation-season albedo and minimum ablation-season albedo and glaciological mass balance of Golubin and Glacier No. 354 over the 2011-2019 period, the annual SMB for these glaciers can be reconstructed using the albedo method over the period 2000-2010. Comparison with previously reconstructed results indicated that the mass balance derived from albedo is robust for Glacier No. 354, while for Golubin, the results derived from the albedo method only captured the relative changes in mass balance. The current study suggested that ablation-season albedo can be regarded as a proxy for annual mass balance, and mean ablation-season albedo may be more reliable than minimum ablation-season albedo for some Tien Shan glaciers.
In this study, energy and mass balance is quantified using an energy balance model to represent the glacier melt of Urumqi Glacier No. 1, Chinese Tian Shan. Based on data from an Automatic Weather Station (4025 m a.s.l) and the mass balance field survey data nearby on the East Branch of the glacier, the COupled Snowpack and Ice surface energy and Mass balance model (COSIMA) was used to derive energy and mass balance simulations during the ablation season of 2018. Results show that the modeled cumulative mass balance (-0.67 +/- 0.03 m w.e.) agrees well with the in-situ measurements (-0.64 +/- 0.16 m w.e.) (r(2) = 0.96) with the relative difference within 5% during the study period. The correlation coefficient between modeled and observed surface temperatures is 0.88 for daily means. The main source of melt energy at the glacier surface is net shortwave radiation (84%) and sensible heat flux (16%). The energy expenditures are from net longwave radiation (55%), heat flux for snow/ice melting (32%), latent heat flux of sublimation and evaporation (7%), and subsurface heat flux (6%). The sensitivity testing of mass balance shows that mass balance is more sensitive to temperature increase and precipitation decrease than temperature decrease and precipitation increase.
Debris-covered glaciers are an important glacier type and have attracted more and more attention. This study presents the results of ablation patterns of debris-covered tongue of the Halong Glacier in the northeastern Tibetan Plateau, by using two repeated unmanned aerial vehicle (UAV) surveys performed on August 11 and September 15, 2019. The results show that the tongue of Halong Glacier has experienced strong ablation during the surveyed period, with an overall ice loss amount to 4.17 x 10(5) metric tons. Among all the briefly classified surface types, supraglacial debris has the largest area (80.9%) and also mass losses (58.6%) comparing to others. However, ice cliffs show the strongest and the most significant ablation rates (averagely 1.36 and 1.22 m w.e. for supraglacial and lateral ice cliffs, respectively), followed by clean ice regions (1.01 m w.e.). The backwastes of ice cliffs also resulted in up to 7.8 m horizontal back-off at different parts of Halong Glacier, lead to fast terminal retreat and narrowing down of the glacier tongue, and may result in the break off of Halong Glacier tongue into separated parts in the future. The surface ablation rates show a clear negative exponential relationship with the measured debris thicknesses, well in accordance with previous studies. Regions in cutting and flushing by supraglacial and lateral rivers have the largest surface elevation decreases but are not significant due to their limited area and the relatively lower quality of UAV digital surface models (DSMs) in those covered regions.
We developed a simple model to estimate ice ablation under a debris cover. The ablation process is modelled using energy and mass conservation equations for debris and ice and heat conduction, driven by input of either i) debris surface temperature or ii) radiation fluxes, and solved through a finite difference scheme computing the conductive heat flux within the supra-glacial debris layer. For model calibration, input and validation, we used approximately bi-weekly surveys of ice ablation rate, debris cover temperature, air temperature and solar incoming and upwelling radiation during for Summer 2007. We calibrated the model for debris thermal conductivity using a subset of ablation data and then we validated using another subset. Comparisons between calculated and measured values showed a good agreement (RMSE = 0.04 m w.e., r = 0.79), thus suggesting a good performance of the model in predicting ice ablation. Thermal conductivity was found to be the most critical parameter in the proposed model, and it was estimated by debris temperature and thickness, with value changing along the investigated ablation season. The proposed model may be used to quantify buried ice ablation given a reasonable assessment of thermal conductivity.