共检索到 239

Liquefaction hazard analysis is crucial in earthquake-prone regions as it magnifies structural damage. In this study, standard penetration test (SPT) and shear wave velocity (Vs) data of Chittagong City have been used to assess the liquefaction resistance of soils using artificial neural network (ANN). For a scenario of 7.5 magnitude (Mw) earthquake in Chittagong City, estimating the liquefaction-resistance involves utilizing peak horizontal ground acceleration (PGA) values of 0.15 and 0.28 g. Then, liquefaction potential index (LPI) is determined to assess the severity of liquefaction. In most boreholes, the LPI values are generally higher, with slightly elevated values in SPT data compared to Vs data. The current study suggests that the Valley Alluvium, Beach and Dune Sand may experience extreme liquefaction with LPI values ranges from 9.55 to 55.03 and 0 to 37.17 for SPT and Vs respectively, under a PGA of 0.15 g. Furthermore, LPI values ranges from 25.55 to 71.45 and 9.55 to 54.39 for SPT and Vs correspondingly. The liquefaction hazard map can be utilized to protect public safety, infrastructure, and to create a more resilient Chittagong City.

期刊论文 2025-12-31 DOI: 10.1080/19475705.2025.2451126 ISSN: 1947-5705

The morphology of sheep wool applied as organic fertilizer biodegraded in the soil was examined. The investigations were conducted in natural conditions for unwashed waste wool, which was rejected during sorting and then chopped into short segments and wool pellets. Different types of wool were mixed with soil and buried in experimental plots. The wool samples were periodically taken and analyzed for one year using Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS). During examinations, the changes in the fibers' morphology were observed. It was stated that cut wool and pellet are mechanically damaged, which significantly accelerates wool biodegradation and quickly destroys the whole fiber structure. On the contrary, for undamaged fibers biodegradation occurs slowly, layer by layer, in a predictable sequence. This finding has practical implications for the use of wool as an organic fertilizer, suggesting that the method of preparation can influence its biodegradation rate. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(SEM)(sic)(sic)(sic)(sic)(sic)X(sic)(sic)(sic)(sic)(EDS)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).

期刊论文 2025-12-31 DOI: 10.1080/15440478.2024.2446947 ISSN: 1544-0478

The development of thermokarst lakes on the Qinghai-Tibetan Plateau (QTP) serves as a prominent indicator of permafrost degradation driven by climate warming and increased humidity. However, quantitative observations of surface change and relationships between lakes and permafrost during thermokarst development remain inadequate. This study utilized long-term terrestrial laser scanning (TLS) to capture high-resolution data on the surface contour changes of the lake in the Beiluhe Basin over 3 years. Between June 2021 and September 2023, the area of BLH-B Lake increased by 19.23% to 6634 m2, with a maximum shoreline retreat distance of 14.37 m. Lake expansion exhibited pronounced seasonal characteristics, closely correlated with temperature and precipitation variations, with the most significant changes occurring during thawing periods. Notably, the lake expanded by up to 505 m2 during extreme rainfall events in the 2022 thawing period, accounting for 47.20% of the total expansion observed over 3 years. Integrated geophysical methods, including electrical resistivity tomography (ERT) and ground-penetrating radar (GPR), revealed substantial permafrost degradation, particularly along the northwestern and western shores, where talik formation occurred within 40 m of the lakeshore. Heat from groundwater flow within the active layer and direct solar radiation contributes to accelerated permafrost degradation around the lake. The integration of TLS with geophysical methods revealed both surface contour changes and subsurface permafrost conditions, providing a comprehensive view of the dynamics of thermokarst lakes. This integrated monitoring approach proves effective for studying thermokarst lake evolution, offering critical quantitative insights into permafrost degradation processes on the QTP and providing essential baselines for climate change impact assessment.

期刊论文 2025-11-26 DOI: 10.1002/ldr.70340 ISSN: 1085-3278

Climate change occurs more rapidly at high latitudes, making polar ecosystems highly vulnerable to environmental changes. Plants respond to these conditions by altering the fluxes of water vapor (H2O) and carbon dioxide (CO2). This study analyzed the seasonal variability of the Net Ecosystem Exchange (NEE) of CO2, as well as the sensible (H) and latent (LE) heat fluxes, in two ecosystems in north-central Siberia: a subarctic palsa mire near Igarka, and a mature larch forest near Tura. The flux responses to variations in atmospheric parameters were also assessed. Experimental data were collected from 2019 to 2023 using eddy covariance methods. The results showed that both permafrost ecosystems consistently served as net atmospheric CO2 sinks during the growing seasons, despite significant year-to-year meteorological variations. From 2019 to 2023, summer NEE ranged from -62.9 to -120.2 gC m-2 in the Igarka palsa mire and from -63.5 to -83.6 gC m-2 in the Tura larch forest. During summer periods characterized by prolonged insufficient soil moisture, higher air temperatures, and limited precipitation, the palsa mire exhibited reduced CO2 uptake (i.e., less negative NEE) and Gross Primary Production (GPP) compared to the larch forest. These results suggest that larch forests may be more resilient to climate change than palsa mires. This resilience is primarily linked to deep-rooted water access and conservative stomatal control in larch, whereas palsa mire vegetation depends strongly on surface moisture availability. H and LE fluxes exhibited significant interannual variations, primarily due to variations in incoming solar radiation and precipitation. No significant LE decrease occurred during periods of low precipitation in 2019 and 2020 when drought conditions were observed at both stations during the summer. Maximum H and LE flux rates occurred in June and July when net radiation values were at their maximum for both ecosystems. These findings underscore the urgent need for ecosystem-specific climate strategies, as differential resilience could significantly impact future carbon dynamics in the rapidly warming Arctic.

期刊论文 2025-11-15 DOI: 10.1007/s10661-025-14750-8 ISSN: 0167-6369

Surface soil moisture (SSM) is a key limiting factor for vegetation growth in alpine meadow on the Qinghai-Tibetan Plateau (QTP). Patches with various sizes and types may cause the redistribution of SSM by changing soil hydrological processes, and then trigger or accelerate alpine grassland degradation. Therefore, it is vital to understand the effects of patchiness on SSM at multi-scales to provide a reference for alpine grassland restoration. However, there is a lack of direct observational evidence concerning the role of the size and type of patches on SSM, and little is known about the effects of patches pattern on SSM at plot scale. Here, we first measured SSM of typical patches with different sizes and types at patch scale and investigated their patterns and SSM spatial distribution through unmanned aerial vehicle (UAV)-mounted multi-type cameras at plot scale. We then analyzed the role of the size and type of patchiness on SSM at both patch and plot scales. Results showed that: (1) in situ measured SSM of typical patches was significantly different (P < 0.01), original vegetation patch (OV) had the highest SSM, followed by isolate vegetation patch (IV), small bare patch (SP), medium bare patch (MP) and large bare patch (LP); (2) the proposed method based on UAV images was able to estimate SSM (0-40 cm) with a satisfactory accuracy (R-2 = 0.89, P < 0.001); (3) all landscape indices of OV, with the exception of patch density, were positively correlated with SSM at plot scale, while most of the landscape indices of LP and IV showed negative correlations (P < 0.05). Our results indicated that patchiness intensified the spatial heterogeneity of SSM and potentially accelerated the alpine meadow degradation. Preventing the development of OV into IV and the expansion of LP is a critical task for alpine meadow management and restoration.

期刊论文 2025-09-01 DOI: http://dx.doi.org/10.3390/rs12244121

Soil compaction caused by heavy agricultural machinery poses a significant challenge to sustainable farming by degrading soil health, reducing crop productivity, and disrupting environmental dynamics. Field traffic optimization can help abate compaction, yet conventional algorithms have mostly focused on minimizing route length while overlooking soil compaction dynamics in their cost function. This study introduces Soil2Cover, an approach that combines controlled traffic farming principles with the SoilFlex model to minimize soil compaction by optimizing machinery paths. Soil2Cover prioritizes the frequency of machinery passes over specific areas, while integrating soil mechanical properties to quantify compaction impacts. Results from tests on 1000 fields demonstrate that our approach achieves a reduction in route length of up to 4-6% while reducing the soil compaction on headlands by up to 30% in both single-crop and intercropping scenarios. The optimized routes improve crop yields whilst reducing operational costs, lowering fuel consumption and decreasing the overall environmental footprint of agricultural production. The implementation code will be released with the third version of Fields2Cover, an open-source library for the coverage path planning problem in agricultural settings.

期刊论文 2025-08-01 DOI: 10.1007/s11119-025-10250-4 ISSN: 1385-2256

This paper aims to investigate the tunnelling stability of underwater slurry pressure balance (SPB) shields and the formation and evolution mechanisms of ground collapse following face instability. A laboratory SPB shield machine was employed to simulate the entire tunnelling process. Multi-faceted monitoring revealed the responses of soil pressure, pore water pressure, and surface subsidence during both stable and unstable phases. The morphological evolution characteristics of surface collapse pits were analyzed using three-dimensional scanning technology. The experimental results indicate that: (1) The key to stable tunnelling is balancing the pressure in the slurry chamber with the tunnelling speed, which ensures the formation of a filter cake in front of the cutterhead. (2) The torque of the cutterhead, soil pressure, and surface subsidence respond significantly and synchronously when the tunnel face becomes unstable, while the soil and water pressures are relatively less noticeable. (3) Excavation disturbance results in a gentler angle of repose and a wider range of collapse in the longitudinal direction of the collapsed pit. (4) A formula for predicting the duration of collapse is proposed, which effectively integrates the evolution patterns of the collapse pit and has been well-validated through comparison with the experimental results. This study provides a reference for the safe construction of tunnel engineering in saturated sand.

期刊论文 2025-08-01 DOI: 10.1016/j.tust.2025.106631 ISSN: 0886-7798

Forest growth in tropical regions is regulated in part by climatic factors, such as precipitation and temperature, and by soil factors, such as nutrient availability and water storage capacity. We examined a decade of growth data from Eucalyptus clonal plantations from over 113,000 forest inventory plots across a 10 million-ha portion of Mato Grosso do Sul in southwestern Brazil. From this full dataset, three subsets were screened: 71,000 plots to characterize growth and yield across water table depth classes, 17,000 plots to build generalized models, and 50,000 plots for clone-based analyses. Average precipitation varied little across the region (1150 to 1270 mm yr(-1)), but water table depth ranged from less than 10 m to over 100 m. Where the water table was within 10 m of the surface, about 20 % of the total water used by trees came from this saturated zone. Water tables deeper than 50 m contributed very little to tree water use. Sites with a water table within 10 m averaged 47 m(3) ha(-1) yr(-1) in stem growth (mean annual increment, MAI) across a full rotation, compared to less than 37 m(3) ha(-1) yr(-1) for sites with water tables deeper than 50 m. Drought-induced canopy damage rose from 7 % to 30 % along the water tables depth gradient, while tree mortality rose nearly fourfold. The optimal stocking level was about 1360 trees ha(-1) where water tables were accessible, declining to 1080 trees ha(-1) where they were not. Among the 15 most planted Eucalyptus clones, increases in MAI from the lowest to highest water table depths ranged from + 4.8 to + 16.8 m(3) ha(-1) yr(-1) , reflecting significant genotype-environment interactions. On average, MAI decreased by 0.8 m(3) ha(-1) yr(-1) (ranging from 0.4 to 1.4) for every 10 m increase in water table depth. Similarly, the Site Index at base age 7 years declined from 31 m to 27 m, with an average reduction of 0.25 m per 10 m increase in water table depth. Physiographic modeling of water table depths offers useful information for forest management practices like forest inventory and planning, clonal allocation, optimized planting densities, fertilization strategies, coppice techniques, and other landscape-specific strategies like tree breeding zones.

期刊论文 2025-08-01 DOI: 10.1016/j.foreco.2025.122771 ISSN: 0378-1127

文章以喀拉喀什河为例,解析1956—2023年天然径流及降水序列的演变特征,揭示径流突变与降水周期性规律。运用累计距平分析法、Mann-Kendall突变检验法和Morlet小波,对相关序列数据开展研究。研究结果表明:径流量呈现阶段性变化,2008年前后发生突变,Morlet小波分析降水序列在1988年前后存在4-6年显著周期;降水丰枯交替明显,但90年代后呈现整体偏湿趋势,1993年后丰水期频次增加。揭示了干旱区内陆河流域径流对气候变暖的响应机制,明确了降水周期的作用。通过多尺度方法集成与长序列数据挖掘,深化了对干旱区内陆河流域水文过程复杂性的认识,为同类区域水资源可持续管理提供了可推广的技术路径与决策依据。

期刊论文 2025-07-04

文章以喀拉喀什河为例,解析1956—2023年天然径流及降水序列的演变特征,揭示径流突变与降水周期性规律。运用累计距平分析法、Mann-Kendall突变检验法和Morlet小波,对相关序列数据开展研究。研究结果表明:径流量呈现阶段性变化,2008年前后发生突变,Morlet小波分析降水序列在1988年前后存在4-6年显著周期;降水丰枯交替明显,但90年代后呈现整体偏湿趋势,1993年后丰水期频次增加。揭示了干旱区内陆河流域径流对气候变暖的响应机制,明确了降水周期的作用。通过多尺度方法集成与长序列数据挖掘,深化了对干旱区内陆河流域水文过程复杂性的认识,为同类区域水资源可持续管理提供了可推广的技术路径与决策依据。

期刊论文 2025-07-04
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共239条,24页