Recycled concrete aggregates (RCA), derived from demolishing concrete buildings and pavements, have been treated with significant value as a recycled resource. Using RCA instead of virgin aggregates for pavement construction became a feasible approach to conserve construction trash resources since approximately 140 million tons per year were produced in the United States. This research conducted a life cycle cost analysis of stabilized clay subgrade soils in Kansas, USA, combining with RCA from pavements damaged by freeze-thawcycles and theD-cracks process. Class C fly ash and type II Portland cement were stabilizers for subgrade mixture designs. The performance of the mixtures was evaluated through Standard Proctor, unconfined compression strength (UCS), and California Bearing Ratio (CBR) tests. The full-depth flexible pavements incorporating these stabilized subgrades were designed using the AASHTOW are Pavement ME Design (PME) software. Results indicated that a 1:1 mix of Class C fly ash and type II Portland cement was the most effective stabilizer, decreasing the required thickness of the hot-mix asphalt (HMA) layer. The life cycle cost analysis demonstrated that the RCA-stabilized subgrades are economically viable when the chemical stabilizers are used in equal proportions.