共检索到 2

Understanding the interface shear behavior between clay and structures is crucial in geotechnical engineering. The mechanism of the roughness effect in the shear process between the clay and structures was studied to reveal the macroscopic and microscopic interface shear behavior. The different surface protrusion shapes of the structures were produced using a three-dimensional (3D) printer. Direct shear tests were conducted to analyze the shear failure modes and peak and residual strengths under different conditions. Subsequently, a discrete element method (DEM) numerical analysis was employed to study the contact network, soil fabric evolution, shear zone, coordination number, and void ratio variations in the interface shear. The test results indicated that the shear interfaces exhibited the same failure mode under various conditions, and the peak and residual strengths showed a strong positive correlation with roughness. The results obtained from numerical calculations match the experimental findings. The contact orientations and principal stresses shifted during the shear process, and the shear zone, coordination number, and void ratio also showed regular changes with the change of roughness. The evolution of microscopic parameters in DEM can effectively help explain the macroscopic interface shear behavior.

期刊论文 2025-01-01 DOI: 10.1155/adce/6356879 ISSN: 1687-8086

This review explores the development and potential applications of space concrete, a critical material for future extraterrestrial construction. Space concrete, adapted to withstand the harsh conditions of outer space, such as extreme temperatures, vacuum, microgravity, and radiation, offers a sustainable solution for building habitats and infrastructure on celestial bodies like the Moon and Mars. Emphasizing the innovative approaches in formulating space concrete, including the use of lunar and Martian soil as aggregates and the exploration of alternative binders to traditional water-based cement, this review highlights the significance of in-situ resource utilization (ISRU) and 3D printing technologies in advancing extraterrestrial construction. Additionally, the current designs and applications of space concrete structures are discussed. By providing a detailed analysis of the challenges faced in space construction and the latest advancements in material and structural research, the review underlines the pivotal role of space concrete in supporting space exploration and long-term habitat.

期刊论文 2024-11-01 DOI: 10.1016/j.engstruct.2024.118723 ISSN: 0141-0296
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页