重复轨道法是利用测高卫星监测南极冰盖高程变化的重要方法。在利用重复轨道方法计算冰盖高程变化时,引入一种基于抗差估计的方法(insrtitue of geodesy and geophysicsⅢ,IGGⅢ)取代传统的最小二乘方法(least square,LS)。利用2019年3月至2021年12月的ICESat-2陆冰高程数据,分别采用LS方法和IGGⅢ方法在东南极Totten冰川流域进行了实验。结果表明,该流域分别呈现出-0.038±0.163 m/yr和-0.040±0.136 m/yr的高程降低趋势,说明IGGⅢ抗差估计方法能够在保留重复轨道方法高数据利用率的基础上,有效地减少异常数据被错误引入产生的误差。利用MEaSUREs ITS_LIVE高程变化产品对两种方法计算的结果进行了对比,IGGⅢ方法的结果在空间分布上具有更好的一致性。
重复轨道法是利用测高卫星监测南极冰盖高程变化的重要方法。在利用重复轨道方法计算冰盖高程变化时,引入一种基于抗差估计的方法(insrtitue of geodesy and geophysicsⅢ,IGGⅢ)取代传统的最小二乘方法(least square,LS)。利用2019年3月至2021年12月的ICESat-2陆冰高程数据,分别采用LS方法和IGGⅢ方法在东南极Totten冰川流域进行了实验。结果表明,该流域分别呈现出-0.038±0.163 m/yr和-0.040±0.136 m/yr的高程降低趋势,说明IGGⅢ抗差估计方法能够在保留重复轨道方法高数据利用率的基础上,有效地减少异常数据被错误引入产生的误差。利用MEaSUREs ITS_LIVE高程变化产品对两种方法计算的结果进行了对比,IGGⅢ方法的结果在空间分布上具有更好的一致性。
重复轨道法是利用测高卫星监测南极冰盖高程变化的重要方法。在利用重复轨道方法计算冰盖高程变化时,引入一种基于抗差估计的方法(insrtitue of geodesy and geophysicsⅢ,IGGⅢ)取代传统的最小二乘方法(least square,LS)。利用2019年3月至2021年12月的ICESat-2陆冰高程数据,分别采用LS方法和IGGⅢ方法在东南极Totten冰川流域进行了实验。结果表明,该流域分别呈现出-0.038±0.163 m/yr和-0.040±0.136 m/yr的高程降低趋势,说明IGGⅢ抗差估计方法能够在保留重复轨道方法高数据利用率的基础上,有效地减少异常数据被错误引入产生的误差。利用MEaSUREs ITS_LIVE高程变化产品对两种方法计算的结果进行了对比,IGGⅢ方法的结果在空间分布上具有更好的一致性。
重复轨道法是利用测高卫星监测南极冰盖高程变化的重要方法。在利用重复轨道方法计算冰盖高程变化时,引入一种基于抗差估计的方法(insrtitue of geodesy and geophysicsⅢ,IGGⅢ)取代传统的最小二乘方法(least square,LS)。利用2019年3月至2021年12月的ICESat-2陆冰高程数据,分别采用LS方法和IGGⅢ方法在东南极Totten冰川流域进行了实验。结果表明,该流域分别呈现出-0.038±0.163 m/yr和-0.040±0.136 m/yr的高程降低趋势,说明IGGⅢ抗差估计方法能够在保留重复轨道方法高数据利用率的基础上,有效地减少异常数据被错误引入产生的误差。利用MEaSUREs ITS_LIVE高程变化产品对两种方法计算的结果进行了对比,IGGⅢ方法的结果在空间分布上具有更好的一致性。
重复轨道法是利用测高卫星监测南极冰盖高程变化的重要方法。在利用重复轨道方法计算冰盖高程变化时,引入一种基于抗差估计的方法(insrtitue of geodesy and geophysicsⅢ,IGGⅢ)取代传统的最小二乘方法(least square,LS)。利用2019年3月至2021年12月的ICESat-2陆冰高程数据,分别采用LS方法和IGGⅢ方法在东南极Totten冰川流域进行了实验。结果表明,该流域分别呈现出-0.038±0.163 m/yr和-0.040±0.136 m/yr的高程降低趋势,说明IGGⅢ抗差估计方法能够在保留重复轨道方法高数据利用率的基础上,有效地减少异常数据被错误引入产生的误差。利用MEaSUREs ITS_LIVE高程变化产品对两种方法计算的结果进行了对比,IGGⅢ方法的结果在空间分布上具有更好的一致性。
重复轨道法是利用测高卫星监测南极冰盖高程变化的重要方法。在利用重复轨道方法计算冰盖高程变化时,引入一种基于抗差估计的方法(insrtitue of geodesy and geophysicsⅢ,IGGⅢ)取代传统的最小二乘方法(least square,LS)。利用2019年3月至2021年12月的ICESat-2陆冰高程数据,分别采用LS方法和IGGⅢ方法在东南极Totten冰川流域进行了实验。结果表明,该流域分别呈现出-0.038±0.163 m/yr和-0.040±0.136 m/yr的高程降低趋势,说明IGGⅢ抗差估计方法能够在保留重复轨道方法高数据利用率的基础上,有效地减少异常数据被错误引入产生的误差。利用MEaSUREs ITS_LIVE高程变化产品对两种方法计算的结果进行了对比,IGGⅢ方法的结果在空间分布上具有更好的一致性。
以东北地区为研究对象,分析多年冻土退化程度及空间分布。通过收集关键气象要素,使用多元线性回归模型修正部分地面温度,基于多年冻土顶部温度(temperature at the top of permafrost,TTOP)模型,利用ANUSPILN 软件进行插值,分析东北多年冻土时空分布变化。结果表明,1970s、1980s、1990s、2000s和2010s的多年冻土面积分别约为3.99 × 105、3.41 × 105、2.31 × 105、1.80 × 105 、1.59 × 105 km2。1970s—2010s,东北地区的多年冻土面积显著减少约2.40 × 105 km2,降幅高达60.08%。多年冻土面积占东北地区总面积的比例从27.66%下降至11.04%,而季节性冻土面积比例则从72.34%增加至88.96%。模型结果与实际钻孔数据差值仅为0.05 °C,且使用修正地面温度数据的模型结果高于现有研究...
以东北地区为研究对象,分析多年冻土退化程度及空间分布。通过收集关键气象要素,使用多元线性回归模型修正部分地面温度,基于多年冻土顶部温度(temperature at the top of permafrost,TTOP)模型,利用ANUSPILN 软件进行插值,分析东北多年冻土时空分布变化。结果表明,1970s、1980s、1990s、2000s和2010s的多年冻土面积分别约为3.99 × 105、3.41 × 105、2.31 × 105、1.80 × 105 、1.59 × 105 km2。1970s—2010s,东北地区的多年冻土面积显著减少约2.40 × 105 km2,降幅高达60.08%。多年冻土面积占东北地区总面积的比例从27.66%下降至11.04%,而季节性冻土面积比例则从72.34%增加至88.96%。模型结果与实际钻孔数据差值仅为0.05 °C,且使用修正地面温度数据的模型结果高于现有研究...
以东北地区为研究对象,分析多年冻土退化程度及空间分布。通过收集关键气象要素,使用多元线性回归模型修正部分地面温度,基于多年冻土顶部温度(temperature at the top of permafrost,TTOP)模型,利用ANUSPILN 软件进行插值,分析东北多年冻土时空分布变化。结果表明,1970s、1980s、1990s、2000s和2010s的多年冻土面积分别约为3.99 × 105、3.41 × 105、2.31 × 105、1.80 × 105 、1.59 × 105 km2。1970s—2010s,东北地区的多年冻土面积显著减少约2.40 × 105 km2,降幅高达60.08%。多年冻土面积占东北地区总面积的比例从27.66%下降至11.04%,而季节性冻土面积比例则从72.34%增加至88.96%。模型结果与实际钻孔数据差值仅为0.05 °C,且使用修正地面温度数据的模型结果高于现有研究...
以东北地区为研究对象,分析多年冻土退化程度及空间分布。通过收集关键气象要素,使用多元线性回归模型修正部分地面温度,基于多年冻土顶部温度(temperature at the top of permafrost,TTOP)模型,利用ANUSPILN 软件进行插值,分析东北多年冻土时空分布变化。结果表明,1970s、1980s、1990s、2000s和2010s的多年冻土面积分别约为3.99 × 105、3.41 × 105、2.31 × 105、1.80 × 105 、1.59 × 105 km2。1970s—2010s,东北地区的多年冻土面积显著减少约2.40 × 105 km2,降幅高达60.08%。多年冻土面积占东北地区总面积的比例从27.66%下降至11.04%,而季节性冻土面积比例则从72.34%增加至88.96%。模型结果与实际钻孔数据差值仅为0.05 °C,且使用修正地面温度数据的模型结果高于现有研究...